Formalizing Monitoring Processes
for Large-Scale Distributed Systems
using Abstract State Machines

Andreea Buga and Sorana Tania Nemes

Christian Doppler Laboratory for Client-Centric Cloud Computing,
Johannes Kepler University of Linz,
Software Park 35, 4232 Hagenberg, Austria
{andreea.buga, t .nemes}@cdcc.faw. jku.at

Abstract. Large-Scale Distributed Systems are characterized by high
complexity and heterogeneity, which might lead to unexpected failures.
The role of a robust monitoring framework is to gather low-level data
and assess the status of the components of the system. The framework
collaborates with adapters for ensuring steady recovery plans and im-
proving the availability of services. Monitors, as part of the system, are
also affected by unavailability or random failures. In order to increase
the reliability of the solution we verify the trustworthiness of the mon-
itors and emphasize the need of redundancy. This paper introduces a
formal approach for modeling and verifying a monitoring solution for
Large-Scale Distributed Systems. We formalize the behavior of the mon-
itors with the aid of Abstract State Machines and employ the ASMETA
toolset for simulating and analyzing properties of the model. The tool
also supports the verification process by translating a simplified version
of the model to an NuSMYV specification, on top of which model check-
ing can be applied. Properties of the model are expressed with the aid
of computation tree logic.

Keywords: Formal Modeling, Abstract State Machines, Monitoring,
Failure Detection, Model Validation, Computation Tree Logic

1 Introduction

Service-oriented architecture (SOA) permits orchestrating resources of various
providers with the aim of delivering highly available and effective services to the
end user. The development of such systems relies on techniques and algorithms
specific to Large-Scale Distributed Systems (LDS). Problems encountered by
any component lead to bigger failures, from which the system needs to recover.

Traditionally, monitoring refers to collecting specific data from components
of the system and interpreting them in order to detect possible issues. Comple-
mented with a robust adaptation framework, monitors ensure that the system
meets its requirements and performs according to the promises expressed in
terms of service-level agreement (SLA).

2 A Formal Approach for Failure Detection in LDS using ASMs

Monitors are components of the LDS and are also faced with unavailability or
misbehavior. False reports on problems of the nodes trigger unnecessary adap-
tation plans, while the impossibility to correctly detect an issue leads to lower
performance of the system or even its complete failure. The goal of the monitor-
ing service we propose is to precisely detect unavailability and crash failures of
system nodes.

The current paper addresses the accuracy of the monitoring processes and
adopts a formal approach for modeling their correct behavior. We impose redun-
dancy for monitoring processes and introduce a measure for the accuracy of the
monitors, referred throughout the paper as confidence degree. We specified the
model for the monitoring framework with the aid of Abstract State Machines
(ASM). In this sense, we engaged the methodology proposed by Arcaini et al. [4]
for simulating, validating and verifying ASM models.

The remainder of the paper is organized as follows. Section 2 presents relevant
work in the area. In Section 3 we define the architecture of the system and discuss
desired behavior, which is translated into a formal specification in Section 4.
Section 4 also contains a brief presentation of ASM specific concepts. Verification
of system properties is carried out in Section 5. Limitations of the approach are
discussed in Section 6, after which conclusions are drawn in Section 7.

2 Related Work

Lattice framework [13] proposed for the evaluation of cloud federations uses dif-
ferent components for executing monitoring processes. It addresses data collec-
tion, encapsulation and communication and serves as a guideline for the monitor
behavior proposed by our ground model. Our work approaches the problem from
the formal point of view, while Lattice discusses implementation details.

mOSAIC [22] relies on SOA and provides an Application Programming In-
terface (API) for communication. Every LDS component is specified in terms
of resource requirements (storage, computing and communication, and budget).
Brokering is done via SLA contracts at both component and application level
and it is handled by the Resource Broker. S-Cube proposes also monitoring and
adaptation services from the perspective of SLA violation [14]. While the focus
of mOSAIC and S-Cube is on the delivery of promised SLAs, our work details
the monitoring unavailability and crash failures.

ASM formal method has been used for specifying and verifying different
aspects of LDS. Ma et al. introduced the notion of Abstract State Services based
on ASMs and described it for a flight booking over a cloud service case study [17],
while Bolis et al. proposed a formal approach for testing the conformance of web
applications using ASM method [6].

In [1], Arcaini et al. propose an ASM model for analyzing Monitor-Analyze-
Plan-Execute over a shared Knowledge (MAPE-K) loops of self-adapting systems
that follow a decentralized architecture. Flexibility and robustness to silent node
failures of the specification are validated and verified with the aid of the AS-
META toolset. The monitoring part of the MAPE-K loops was, however, not

Formalizing Monitoring Processes for LDS using ASMs 3

included. Arcaini et al. also addressed the specification and verification of the
adaptation component for cloud systems [4].

Grid systems were also analyzed in terms of ASMs with respect to job and ex-
ecution management by [5]. Differences between traditional distributed systems
and grids were presented in an ASM formal description by [21]. The previously
mentioned work on ASM specifications for distributed systems is representative
for our understanding of distributed ASMs and their elaboration.

In our earlier work, we discussed the requirements of the monitoring solution
for cloud-enabled Large-Scale Distributed Systems (CELDS) with respect to
two areas of high interest for the development of smart cities [11,12]. In [11]
we presented the requirements of the monitoring services for a traffic system
and translated them to an ASM ground model that has been simulated. The
model has been discussed in correlation with a healthcare system deployed in
CELDS and his previous versions have been validated in [10,12]. The current
paper extends this work and focuses on the verification of the ASM model. If the
desired properties are ensured, the model can be further expanded to an actual
prototype.

3 System Overview

LDS are composed of resources and services offered by various providers. One
of the successful business models relying on algorithms and principles of LDS
is cloud computing. While single providers cover the basic computing require-
ments, the increasing amount of data to be processed led to interconnecting
clouds. The services are heterogeneous and their internal structure is unknown
to the monitors. However, they allow the collection of a specific set of metrics,
relevant for the assessment of their status. The current work has been extended
on the frame of the monitoring services for CELDS, whose foundation has been
presented in [18].

CELDS compose resources and services from different providers to respond to
the needs of the clients. For instance, when there is a peek of requests, resources
are asked from other providers. The system is a black box for the user, who is
interested only in the quality of the services he requests. The execution layer,
whose model and definition we take from [9], needs to be continuously monitored
for flaws that might affect the availability or reliability. The role of the monitors
is to detect and correctly assess faulty situations and submit this information
further for system adaptation. The monitoring and adaptation components com-
municate intensively in order to detect and resolve problems occurring at the
execution layer.

3.1 System Architecture

CELDS consist of different tiers as shown in Fig. 1. From the client-side, a large
number of devices can send requests to providers. All the requests and replies
are handled by a client-provider middleware formalized by [9]. Each provider,

4 A Formal Approach for Failure Detection in LDS using ASMs

Provider;, of the system consists of a set of nodes {NN;1, N, }, whose resources
are composed and offered as services to users. Nodes can refer to a processing or
a storage unit. Every node is assigned a set of monitors {mi, m;} that evaluate
its status. The monitoring layer communicates with the adaptation component
by providing meaningful information for reconfiguration plans, which bring the
system into a normal working state. The adaptation processes have been previ-
ously defined and formalized in [19,20].

[/4
- Em! g - Client/

leware

.
lent. t
Droy;, t
T = PIovide,
EI(‘I in Crac; iOJ] midd
I B 1]

Providers

Provider, Provider,

Mgy My, My MY My my, My " My

s
R

J Monitoring Layer

Adaptation Layer

Abstract Machine

Fig. 1. Architecture of the system

3.2 Structure of the Monitoring Component

The monitoring layer continuously runs in the background of the execution layer
and collects data related to each node. Monitors face also own issues. They might
be unresponsive or submit random information, rather than the correct one.
We introduce the notion of confidence degree based on their relative accuracy.
The more imprecise evaluations a monitor does, the lower its confidence. The
accuracy of a monitor is calculated as the deviation of the diagnosis it provides
in comparison with the diagnosis voted by the majority of the monitors. If the
confidence degree of one monitor falls below a certain threshold, it is deactivated.
We assume that this process is correctly performed by the middleware and do
not model this aspect.

Assessment of one monitor is not sufficiently reliable as data unavailability
does not necessarily imply node failure. It can also indicate a problem of the

Formalizing Monitoring Processes for LDS using ASMs 5

monitor itself or of the communication link. We, then, need more monitors to
contribute to the assessment. We assume that each node is observed by at least
three monitors, which can collaborate and that the assignment is executed by
the middleware. The minimum number of monitors represents the minimum
number of participants in a voting quorum. We introduce the notion of leader of
the monitors assigned to a node, which coordinates collective diagnoses whenever
an issue is reported by one of the them. As shown in Fig. 2, all the monitors
observe the node. Monitor; discovers a problem and reports it to the leader,
which afterwards requests data from all the monitors associated to the node.

Monitor, Observe Node Observe Monitory

o
7 E
L =
N %
Q 2
o
< <
3 <
3 - r -
‘:7; Monitor; ‘ ‘Momtorj ‘ ‘ Monitory E
El = g
= < < 2 < =
3 < =1 =4 < o
= < © =1 S ~
= 7 = <
7] 3 =] 7]
£ 2 |2 E]
o 5] o =y
] e]
~ ~ =} ~
{Leader

Fig. 2. View on the monitoring set assigned to a node

The leader is a different agent type, which settles a diagnosis based on the in-
formation received from all the monitors. The decision is taken based on a voting
method, where each monitor inputs its own evaluation with a weight equal to its
confidence degree. At the end, the diagnosis preferred by the most trustworthy
majority is chosen and each of the monitor recalculates its confidence degree as
follows. If the monitor inputs the same diagnosis as the one calculated by the
leader, its confidence degree value does not modify. Otherwise, a penalty factor
is applied. The number of similar diagnoses also contributes to the recalculation
of the confidence degree. The larger the number of equivalent diagnoses to the
one given by the monitor, the lower the decrease. It is, thus, considered that
assessments shared by a larger number of monitors are more likely to be cor-
rect. Equation 1 shows the formula used to recalculate the confidence degree.
The penalty factor is defined at initialization, depending on how critical the
system is. The number of similar diagnoses represents the number of monitors
who submitted the same assessment as monitor;, while the number of diagnoses
represents the total number of monitors who submitted their assessment.

di — |similar_di
conf degree(i) = conf degree(i)— |diagnoses| — |similar_diagnoses|

- =xpenalty_factor,
|diagnoses|

where © € Monitors(n),n € Nodes (1)

6 A Formal Approach for Failure Detection in LDS using ASMs

4 Formal Specification of the System

4.1 Background on ASM Theory

ASM is a formal method, which enhances the notion of Finite State Machine
(FSM) with the possibility to express data structures for the in and out states
connected by a transition. An ASM machine M is defined as a tuple M =
(X, S0, R, Ry), where X is the signature (the set of all functions), Sy is the set
of initial states of X/, R is the set of rule declarations, Ry is the main rule of the
machine.

A model consists of a finite set of transition rules of type: if Condition then
Updates, where the Condition is an arbitrary predicate logic formula and the
Updates is defined as a set of assignments to a location represented as a function
f having a list of dynamic parameters ti,..,t,: f(t1, ..., tn) := t. The method
permits expressing synchronous parallelism, in which an update might attempt
to assign distinct values to a location, thus leading to inconsistent updates. The
following definition supported by Fig. 3 has been given by [7].

Definition 1. A control state ASM is an ASM following the structure of the
rules illustrated in Fig. 3: any control state i verifies at most one true guard,
condy, triggering, thus, ruler and moving from state i to state si. In case no
guard is fulfilled, the machine does not perform any action.

if ctl_state = i then
if cond, then
ruley
ctl_state := jp
end if
if cond,, then
rule,
ctl_state := jy,
end if
end if

Fig. 3. Structure of a control state ASM

Rules of an ASM indicate control structures emphasizing parallelism (par),
sequentiality (seq) and causality (if...then). With the forall expression, a
machine can enforce concurrent execution of a rule R for every element = that
satisfies a condition ¢: forall z with ¢ do R. Non-determinism is expressed
through the choose rule: choose z with ¢ do R.

Kossak and Mashkoor compared different formal models in [16] with respect
to their expressiveness, easiness to use, integration in the software development
process, and learning curve. ASM and Temporal Logic of Actions (TLA+) meth-
ods proved a good suitability for distributed systems. Petri Nets were not in-
cluded in the study, but a comparison with the ASM method on concrete exam-

Formalizing Monitoring Processes for LDS using ASMs 7

ples was carried out by Borger in [8], where Petri Nets proved to generate more
complex and hard to follow specifications.

4.2 Overall Workflow of Model Specification and Analysis

Elaboration, validation and verification of the model follow a set of steps depicted
in Fig. 4. System requirements are first captured by an ASM model, which can
be easily defined with the Asmetal. language. Transformation of the monitoring
processes requirements to ASM ground models has been previously expressed
in [11,12]. The ASMETA model can be further simulated or validated by building
specific scenarios as detailed in [10]. The tool permits also automatic review of
the model for properties like conciseness or for design issues using the AsmetaMA
adviser, and the AsmetaSMV tool generates a NuSMV model, which can be
verified against desired properties.

. for verifies generates AsmetaSMV
CTL P t. -~ —

S
3o\
2
X2
System captured in translated to checks AsmetaMA
) | ASM model | I ASMETA model | <o | Asmeta
requirements Advisor

o
& =
£

AValLa build AsmetaV AsmetaS .
. DE— X . . Metaproperties
scenario validator simulation

Fig. 4. Overall workflow of the modeling and verification processes

es

simulat

4.3 ASM Specification of the Monitoring Solution

The ASM specification of the monitoring solution closely matches the description
from Section 3.2 and its structure is depicted in Fig. 5. The model consists of a
middleware agent, responsible for initializing the system and administration op-
erations (assignment of monitors, deactivation of untrustworthy components).
The model contains two main modules, one for the monitor and one for the
leader. We also used the C'TLlibrary offered by the ASMETA toolset for verifi-
cation. CELDS nodes are defined as elements of a domain and they contain a
few functions relevant for the monitoring processes. We left abstract their formal
specification and focused on the monitoring part. For the verification part, the
model has been reduced to one agent and the functions have been simplified so
that they contain primitive, finite data types.

8 A Formal Approach for Failure Detection in LDS using ASMs

Monitoring Framework ‘

—— module | ! module |
777777777 Monitor |] Leader
| |
| ey U s
———Y ! module | —— 1 'asm.

g L ‘, g 1
CTLlibrary Middleware

Fig. 5. Structure of the ASM monitoring specification

The monitor module corresponds to the ground model depicted in Fig. 6 and
relies on the description of [10,11]. Each monitor is initialized by the middleware
agent in the Inactive state. As soon as it is deployed, it is assigned to a node and
moves to the Active state. From this state it sends a ping request (referred further
in the paper as heartbeat request) to verify if the node is available and moves
to the Wait for response state. There, it checks two guards. First, it verifies
if a reply arrived and if so, it processes the response. Otherwise, it checks if
the request has a timeout. We had to let abstract concrete time details, but
we replaced the timeout with a loop which can be executed a finite number of
times (ten times in the case of our simulation). If the request has a timeout, it
is stopped and the node is considered unavailable. The monitor moves, thus, to
the Report problem state. After processing the request response, the monitor is
ready to Collect data and after it finishes this process it moves to the Retrieve
information state, where it tries to access additional data about the node. If
the repository is not available, it carries out a diagnosis based on the current
data, otherwise it queries the repository and executes a more complex analysis.
If a problem has been discovered after analysis, the monitor moves to the Report
problem state. Otherwise, it logs the data. The Report problem state corresponds
to announcing the leader that it needs to a carry out a collaborative evaluation.
After logging the data related to the current monitoring cycle, a guard verifies
if its confidence degree is higher than the minimum accepted. In this case, the
monitor starts a new cycle, otherwise it is deactivated by the middleware agent.

Latency|CPU usage |Memory usage|Storage usage|Work capacity

[ms] [Percentage]|[Percentage] |[Percentage] |[Percentage]
NORMAL | <100 <40 <40 <40 >85
CRITICAL| <100 >40 >40 >40 <85
FAILED >100 NA NA NA NA

Table 1. Correlation between monitored data and node state

Data collected by the monitors capture a small set of parameters reflect-
ing usage of resources and response time, which indicate possible unavailability

Formalizing Monitoring Processes for LDS using ASMs 9

and failure problems. We considered three possible diagnoses established by the
monitors, { Normal, Critical, Failed}. Normal state corresponds to a small la-
tency, small resource usage and high work capacity. Critical state refers to small
latency, but high resource usage and small work capacity. Failure points to un-
availability indicated by a high latency. The correspondence between the metrics
collected by the monitor and the diagnosis it sets is depicted in Table 1. The
values used for the classification are the ones expected generally for a service
accessed through a high speed internet connection.

Fig. 6. Ground model of the monitor module

The rule responsible for collecting data from the node is captured in Code
1. It iterates through a set of specified metrics and for each of them checks if a
value is defined and adds it to the gathered data.

rule r_GatherMetrics ($m in Monitor) =
let ($count = 0) in
while ($count < size(Metric)) do
seq
if (isDef(metric_value)) then
monitor_measurements ($m) := append(monitor_measurements($m), (at(
asSequence(Metric),iton($count)), metric_value))
else
monitor_measurements ($m) := append(monitor_measurements($m), (at(
asSequence(Metric),iton($count)), 0))
endif
$count := $count + 1
endseq
endlet

Code 1. Monitor rule to gather metrics

10 A Formal Approach for Failure Detection in LDS using ASMs

If no value is defined, it simply adds zero, which is considered neutral by the
specification. Data collection is done sequentially because a parallel execution
tries to update the measurement list with different values at the same time. The
inconsistency error was detected at simulation time with the aid of the AsmetaS
tool. We leave as a future work the elaboration of transaction specific operations,
which would permit submitting simultaneously multiple monitored values to the
list of metrics.

The leader module focuses on collecting information from all the monitors
of a node and using it for a final decision in case of reported issues. It starts
from a state in which it waits for the Evaluation requested guard to become true.
This guard is activated when a monitor reports a problem and moves the leader
to the Fvaluate state from where it requests data from all the monitors of the
node. Then it moves to the assess state, where it uses the voting algorithm to
evaluate the node. The voting method is a consensus problem and in comparison
with previous algorithms, we require that each voter (monitor) contributes to
a weight equal to its confidence degree to the final decision. The control state
ASM of the leader is illustrated by Fig. 7.

Request data Clear data

Evaluation requested

Fig. 7. Ground model of the leader module

The leader coordinates evaluations executed by different monitors assigned to
the node. It, thus, aims to increase the accuracy of the monitoring services. We
can analyze its role on the following example. Let us assume a node is observed
by three monitors, all having the confidence degree equal to 100. One of them
reports that the node is unavailable, making in this way the Evaluation requested
guard. The real issue is that the communication link between it and the node
is broken. In parallel, the other two monitors receive responses from the node
and continue their assessment. On the request of the leader, they submit their
evaluation and vote that there is no problem with the node. The leader analyzes
all three responses and decides that the node does not exhibit any actual problem
(by the voting procedure). The monitoring framework prevents in this way a false
positive report of a problem, that would trigger an unnecessary adaptation of
the node.

The middleware agent is expressed as an ASM where all the functions and
instances are initialized. It contains only one state, Fxecuting, and we assume
that all the actions carried out by it are reliable and correctly executed.

Formalizing Monitoring Processes for LDS using ASMs 11

5 Verification of the Model

5.1 Analysis of Model Quality

The AsmetaMA model reviewer tool establishes the quality of the model by
checking its compliance to a set of properties and indicating which functions,
rules and control states are not necessary or not well specified. The tool relies
on the translation of the model to an NuSMV specification. We list below the
list of properties we checked, but we refer the reader to [3] for the complete list
of properties and more details on the review procedure.

1. MP1 - No inconsistent updates are performed.
Result: NONE (NONE indicates that no violations have been found).

2. MP2 - Every conditional rule is complete
Result: ConditionalRule if (heartbeat_timeout(self)) is not complete.
ConditionalRule if (isUndef(has_leader($n))) is not complete.

3. MP4 - No assignment is always trivial
Result: Trivial update of location trigger_gossip(MONITOR_3). When the
condition is (TRUE & !(monitor_state(monitor_3) = INACTIVE) & (mon-
itor_state(monitor_3) = LOG_DATA)) its value is always the same of the
term FALSE.

4. MP5 - For every domain element e there exists a location which has value e
Result: None

5. MP7 - Every controlled location is updated and every location is read.

Result: Functions middleware_state, has_leader, assigned node, confidence_degree

could be defined static.

The result of the model quality analysis was used for refining the model and
removing unnecessary functions or reviewing incomplete conditional structures.

5.2 Verification of Specification Properties

ASMETA toolset allows verifying properties of the model by using Computation
Tree Logic (CTL) operators. The framework supports the translation of the
model to an NuSMYV specification that can be further checked. NuSMV supports
only finite domains and simple data structures. Hence, the Asmetal. initial model
had to be oversimplified. CTL properties were translated into Asmetal. functions,
which are part of the CTLlibrary described by [2].

We carried out the verification of a set of properties, which handle aspects
related to the communication between modules. We are interested in the correct-
ness of the monitoring processes. We propose for the future work the inclusion of
the confidence degree values in the verification process. As the verification phase
is constrained to using finite sets, we defined one node to which we assigned
three monitors having one leader. We simplified functions to contain finite In-
teger values instead of Real ones (for confidence degree or metric values) and
focused on the correctness of the monitoring workflow. All the properties were

12 A Formal Approach for Failure Detection in LDS using ASMs

specified in CTL and verified on a Windows machine having Intel(R) Core(TM)
i7 CPU @ 2 GHz, 8 GB RAM with the aid of the AsmetaSMV Eclipse Plug-in.

Any monitor that is assigned to a node, being thus in the Active state,
eventually reaches the state where he logs the information collected, Log_data.
We ensure in this case that a monitoring cycle is eventually completed.

CTLSPEC (forall $m in Monitor with ag((monitor_state($m) = ACTIVE) implies
ef(monitor_state($m) = LOG_DATA)))

If a monitor submits a request and does not receive a response for it, the
monitor reports the issue. We ensure in this way, that unavailability of the node
is communicated further.

CTLSPEC (forall $m in Monitor with ag((monitor_state($m) =
WAIT_FOR_RESPONSE and not(heartbeat_response_arrived($m))) implies
ax(monitor_state($m) = REPORT_PROBLEM)))

Monitors having a lower confidence degree are dismissed and move to the
inactive state. This property does not allow faulty monitors to analyze nodes of
the CELDS and aims to enforce a fail-safe behavior of the monitoring solution.

CTLSPEC (forall $m in Monitor with ag((confidence_degree($m) <
min_confidence_degree) implies ax(monitor_state($m) = INACTIVE)))

If any of the monitors reports a problem, the leader starts the evaluation
of the node. The property verifies that all reported issues are handled by the
system.

CTLSPEC (forall $m in Monitor with ag((trigger_gossip($m) = true) implies
ef(leader_state(leader_1) = EVALUATE)))

A leader that starts the evaluation must reach a conclusion and establish
an assessment. This property guarantees that the evaluation process provides a
result to the system.

CTLSPEC (forall $| in Leader with ag((leader_state($l) = EVALUATE) implies
ef(isDef(assessment($1)))))

> NuSMV —dynamic —coi —quiet C:\Work\Specs\ASMeta-Specs\code\Verification\SingleModelVerification.smv

— — specification ((AG (monitor_state(monitor-2) = ACTIVE —> EF monitor_state(monitor-2) = LOG_DATA) &
AG (monitor_state(monitor_.1) = ACTIVE —> EF monitor_state(monitor_.1) = LOG_DATA)) & AG (
monitor_state(monitor-3) = ACTIVE —> EF monitor_state(monitor_3) = LOG_DATA)) is true

— — specification ((AG ((!heartbeat_timeout(monitor-2) & (monitor_state(monitor_2) = WAIT_FOR_RESPONSE &
heartbeat_response_arrived (monitor_2))) —> AX monitor_state(monitor_2) = COLLECT.DATA) & AG ((!
heartbeat_timeout(monitor_1) & (heartbeat_response_arrived(monitor_1) & monitor_state(monitor_1) =
WAIT_FOR_RESPONSE)) —> AX monitor_state(monitor_1) = COLLECT_DATA)) & AG ((!
heartbeat_timeout(monitor_3) & (monitor_state(monitor_3) = WAIT_FOR_RESPONSE &
heartbeat-response-_arrived(monitor-3))) —> AX monitor_state(monitor-3) = COLLECT-DATA)) is true

— — specification ((AG ((monitor_state(monitor_2) = WAIT_.FOR_RESPONSE & !heartbeat_response_arrived(
monitor-2)) —> AX monitor_state(monitor-2) = REPORT-PROBLEM) & AG (('heartbeat-response_arrived(
monitor_1) & monitor_state(monitor_1) = WAIT_FOR_RESPONSE) —> AX monitor_state(monitor_1) =
REPORT_PROBLEM)) & AG ((monitor_state(monitor_3) = WAIT_FOR_RESPONSE & !
heartbeat_response_arrived (monitor_3)) —> AX monitor_state(monitor_3) = REPORT_PROBLEM)) is true

— — specification ((AG (confidence_degree(monitor_3) < 80 —> AX monitor_state(monitor_3) = INACTIVE) & AG
(confidence_degree(monitor_1) < 80 —> AX monitor_state(monitor_1) = INACTIVE)) & AG (
confidence_degree(monitor_2) < 80 —> AX monitor_state(monitor_2) = INACTIVE)) is true

— — specification ((AG (trigger_gossip(monitor_2) —> EF leader_state(leader_1) = EVALUATE) & AG (
trigger-gossip(monitor-3) —> EF leader-state(leader-1) = EVALUATE)) & AG (trigger-gossip(monitor-1)
—> EF leader_state(leader-1) = EVALUATE)) is true

— — specification AG (leader_state(leader-1) = EVALUATE —> EF assessment(leader_1) != undef) is true

— — specification AG (leader_state(leader-1) = IDLE_.LEADER — > EF assessment(leader-1) != undef) is false

Code 2. AsmetaSMV Trace

Formalizing Monitoring Processes for LDS using ASMs 13

A leader that is in idle state is not allowed to assign a diagnosis. This prop-
erty checks that the leader does not misbehave and starts to randomly carry
out assessments. The property must be evaluated to false and the tool offers a
counterexample as well.

CTLSPEC (forall $I in Leader with ag((leader_state($l) = IDLE_.LEADER)
implies ef(isDef(assessment($1)))))

The AsmetaSMYV result of the property verification is captured by the snippet
from Code 2.

6 Discussions and Limitations

The current ASM specification focuses on achieving correct behavior of the mon-
itors. It emphasizes the importance of establishing an accurate diagnosis of a
component of the CELDS, given a set of partial views of the system submitted
by each monitor assigned to the component. Although the ASM method per-
mits a straightforward translation of the requirements into a formal model, our
approach suffers of several limitations as follows.

In the validation stage, we had to simplify the specification by removing the
non-deterministic character of the choose rules. The verification process implied
translating the model to an NuSMYV specification, which could be model checked.
Hence, infinite domains had to be removed or replaced by finite sets of Integer /
Natural or enumerations. Another problem we encountered was the impossibility
of assigning the value of a function as parameter for another function. Time
related aspects of the solutions were also not supported by the ASM method.
The ASM models can be complemented by other formal specifications focused
on timing aspects like TLA+, for example.

The simplification of the model widens the gap to the high complexity of
CELDS. However, the specification still captures important insights on the be-
havior of the monitors and helps identifying design flaws.

The research work described in this paper encompasses the steps executed to
transform the requirements of the monitoring processes for CELDS to an actual
formal model, which can be analyzed and verified. Once we had the ASM ground
model, we could easily translate the states and rules to an Asmetal. model. The
ASMETA toolset integrated with the Eclipse plug-in supported the simulation,
validation and verification of the model, which were carried out gradually. How-
ever, there are still a number of open questions to be answered. For instance,
the model adviser tool identifies unnecessary functions or incomplete conditional
structures, but it does not assess the coverage of the model with respect to the
problem domain. Validation by scenarios provides useful insights as long as the
scenarios defined by the modeler are representative enough. In the verification
phase, the understanding of the properties by the modeler determines the im-
portance of model checking results. We consider that ASMETA toolset supports
the designer in elaborating the specifications, assessing their quality, and even-
tually finding related drawbacks, but it still needs the human expertise in order
to provide relevant answers.

14 A Formal Approach for Failure Detection in LDS using ASMs

7 Conclusions and Future Work

The paper addresses the monitoring aspect for CELDS from a formal perspec-
tive. We presented the methodology for elaborating and assessing a formal model
for monitoring processes of CELDS using the ASMETA toolset. The focus of our
work was on ensuring the correctness of the monitors, and hence enhancing the
reliability and availability of the whole system. The work focuses on translat-
ing monitoring related processes to a formal model and verifying its properties.
Through rigorous analysis of the model we can identify design flaws, that oth-
erwise, would propagate to the implementation phase of software development.

The model we propose is still open to future refinements, in which interpre-
tation of data can be improved by considering aggregation of parameters into
higher-level metrics. The spectrum of properties to verify can be enlarged by
elaborating more the dependencies between the components and encompassing
quantitative aspects of the voting process.

References

1. P. Arcaini, E. Riccobene, and P. Scandurra. Modeling and analyzing MAPE-K
feedback loops for self-adaptation. In 2015 IEEE/ACM 10th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems, pages
13-23, May 2015.

2. Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. AsmetaSMV: A Way
to Link High-Level ASM Models to Low-Level NuSMYV Specifications, pages 61-74.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

3. Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Automatic review of
Abstract State Machines by meta property verification. In Second NASA Formal
Methods Symposium - NFM 2010, Washington D.C., USA, April 13-15, 2010.
Proceedings, pages 4-13, 2010.

4. Paolo Arcaini, Roxana-Maria Holom, and Elvinia Riccobene. Asm-based formal
design of an adaptivity component for a cloud system. Formal Aspects of Comput-
ing, 28(4):567-595, 2016.

5. Alessandro Bianchi, Luciano Manelli, and Sebastiano Pizzutilo. An ASM-based
model for grid job management. Informatica (Slovenia), 37(3):295-306, 2013.

6. Francesco Bolis, Angelo Gargantini, Marco Guarnieri, Eros Magri, and Lorenzo
Musto. Model-driven testing for web applications using abstract state machines.
In Proceedings of the 12th International Conference on Current Trends in Web
Engineering, ICWE’12, pages 71-78, Berlin, Heidelberg, 2012. Springer-Verlag.

7. E. Borger and Robert F. Stark. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2003.

8. Egon Borger. Modeling distributed algorithms by abstract state machines com-
pared to petri nets. In Proceedings of the 5th International Conference on Abstract
State Machines, Alloy, B, TLA, VDM, and Z - Volume 9675, ABZ 2016, pages
3-34, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

9. Kéroly Bésa, Roxana-Maria Holom, and Mircea Boris Vleju. A Formal Model of
Client-Cloud Interaction, pages 83—144. Springer International Publishing, Cham,
2015.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Formalizing Monitoring Processes for LDS using ASMs 15

Andreea Buga and Sorana Tania Nemes. A formal approach for failure detection in
large-scale distributed systems using Abstract State Machines. In Djamal Bensli-
mane, Ernesto Damiani, William I. Grosky, Abdelkader Hameurlain, Amit Sheth,
and Roland R. Wagner, editors, 28th International Conference, DEXA 2017, Lyon,
France, August 28-31, 2017, Proceedings, Part I, volume 10438 of LNCS. Springer,
2017. To appear.

Andreea Buga and Sorana Tania Nemes. Towards modeling monitoring of smart
traffic services in a large-scale distributed system. In CLOSER 2017 - Proceedings
of the 7th International Conference on Cloud Computing and Services Science,
Porto, Portugal, April 24-26, 2017., pages 455—462, 2017.

Andreea Buga and Sorana Tania Nemes. Towards modeling monitoring services for
large-scale distributed systems with abstract state machines. volume 1859 of Radar
track at the 22nd International Working Conference on Evaluation and Modeling
Methods for Systems Analysis and Development (EMMSAD) co-located with the
29th International Conference on Advanced Information Systems Engineering 2017
(CAiSE 2017), Essen, Germany, June 2017. CEUR.

S. Clayman, A. Galis, and L. Mamatas. Monitoring virtual networks with Lattice.
In Network Operations and Management Symposium Workshops (NOMS Wksps),
2010 IEEE/IFIP, pages 239246, April 2010.

Mariagrazia Fugini and Hossein Siadat. SLA Contract for Cross-Layer Monitoring
and Adaptation, pages 412-423. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

Yuri Gurevich. Specification and validation methods. chapter Evolving Algebras
1993: Lipari Guide, pages 9-36. Oxford University Press, Inc., New York, NY,
USA, 1995.

Felix Kossak and Atif Mashkoor. How to Select the Suitable Formal Method foran
Industrial Application: A Survey, pages 213-228. Springer International Publish-
ing, Cham, 2016.

H. Ma, K. D. Schewe, and Q. Wang. An abstract model for service provision,
search and composition. In 2009 IEEE Asia-Pacific Services Computing Confer-
ence (APSCC), pages 95-102, Dec 2009.

Roberto Moreno-Diaz, Franz Pichler, and Alexis Quesada-Arencibia, editors. Com-
puter Aided Systems Theory - EUROCAST 2015 - 15th International Conference,
Las Palmas de Gran Canaria, Spain, February 8-13, 2015, Revised Selected Papers,
volume 9520 of Lecture Notes in Computer Science. Springer, 2015.

Sorana Tania Nemes and Andreea Buga. Towards a case-based reasoning approach
to dynamic adaptation for large-scale distributed systems. In Case-Based Rea-
soning Research and Development - 25th International Conference, ICCBR 2017,
Trondheim, Norway, June 26-28, 2017, Proceedings, pages 257271, 2017.

Sorana Tania Nemes and Andreea Buga. Towards modeling adaptation services
for large-scale distributed systems with abstract state machines. In Proceedings of
the Seventh International Symposium on Business Modeling and Software Design
- Volume 1: BMSD,, pages 193-198. INSTICC, SciTePress, 2017.

Zsolt N. Németh and Vaidy Sunderam. A formal framework for defining grid
systems. 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, 0:202, 2002.

Dana Petcu, Ciprian Craciun, Marian Neagul, Silviu Panica, Beniamino Di Mar-
tino, Salvatore Venticinque, Massimiliano Rak, and Rocco Aversa. Architecturing
a sky computing platform. In Proceedings of the 2010 International Conference on
Towards a Service-based Internet, ServiceWave’10, pages 1-13, Berlin, Heidelberg,
2011. Springer-Verlag.

	Formalizing Monitoring Processes for LDS using ASMs
	Introduction
	Related Work
	System Overview
	System Architecture
	Structure of the Monitoring Component

	Formal Specification of the System
	Background on ASM Theory
	Overall Workflow of Model Specification and Analysis
	ASM Specification of the Monitoring Solution

	Verification of the Model
	Analysis of Model Quality
	Verification of Specification Properties

	Discussions and Limitations
	Conclusions and Future Work

