Generalized Oracle for Testing Machine
Learning Computer Programs

Shin Nakajima

National Institute of Informatics
Tokyo, Japan

Abstract. Computation results of machine learning programs are not
possible to be anticipated, because the results are sensitive to distribution
of data in input dataset. Additionally, these computer programs some-
times adopt randomized algorithms for finding sub-optimal solutions or
improving runtime efficiencies to reach solutions. The computation is
probabilistic and the results vary from execution to execution even for a
same input. The characteristics imply that no deterministic test oracle
exists to check correctness of programs. This paper studies how a no-
tion of oracles is elaborated so that these programs can be tested, and
shows a systematic way of deriving testing properties from mathematical
formulations of given machine learning problems.

1 Introduction

Software testing, debug testing, is a practical method for informal assurance
on the quality and reliability of computer programs. It relies on deterministic
test oracles with prescribed correct values usually given as design specifications.
These oracles show the same behavior, for the same input data, returning the
same checking result even for different executions of the target program.

Exact correct values of ML programs are not known in advance because they
discern unknown valuable information from input dataset. Such programs are
considered non-testable [6]. In addition, because ML problems are mostly NP-
hard and intractable, ML programs may implement randomized algorithms for
obtaining sub-optional solutions (e.g. [1]). This randomness makes computation
results different from executions to executions. Deterministic oracles are not
available for ML programs.

This paper studies an appropriate notion of oracles for testing ML programs.
Section 2 studies characteristics of ML programs from testing views, and presents
a general method to use metamorphic testing (MT) [3]. Section 3 and Section 4
present example cases of applying the proposed method to two machine learning
problems, support vector machines (SVM) and neural networks (NN), which is
followed by concluding discussions in Section 5.

2 Generalized Test Oracles

Deterministic test oracles for software testing rely on two key features. Given
a specific test input data (X), a target program reaches a final state with a

commutation result (V). Firstly, those oracles determine whether the results are
equal to prescribed correct values with respect to the input (Y = C¥). Secondly,
the oracles behave the same for different executions of the target when the input
is the same. ML programs violates assumptions for deterministic oracles; (1)
correct values are not known in advance, (2) returned values are varied due to
random values. We mainly consider the first aspect and then studies the second
one for the case of a particular ML problem.

Pseudo oracles are using relative correct values instead of absolute correctness
[6]. Such correct values are results of program executions. When two program
versions (f1 and fo) exist, computation results of either one, say f1, plays a role
of golden outputs, correct values for the other (f2). Alternatively, metamorphic
testing (MT) [3] uses just one program, and considers two executions of f; with
two different inputs (X; and X5). The test inputs are related by a translation
function T (X3 = T'(X1)), and a certain relation Ry holds for the two execution
outputs, Rp(f1(X1), f1(X2)). For a given translation T on the input test data,
Rt is a metamorphic relation between the outputs. Metamorphic testing is a
testing method that uses the relation Ry as a basis for pseudo oracles. We
consider that some faults are in the program when Ry is violated, because Ry is
so chosen that the two executions are believed to be the same. In simple cases,
Ry is an identity (f1(X1) = fi(T(X1))).

The translation T' and metamorphic relation (MR) My must respect func-
tional requirements of the program. A systematic method to derive T and Mt
from a problem description is needed so that identified pseudo oracles are effec-
tive to uncover faults with respect to the requirements.

Statistical machine learning is formulated as an optimization problem [1].
For a given machine learning task such as classifying a set of data, a problem is
formulated as a mathematical function F©(0; x), where @ is a set of parameters
to be determined. An ML problem is introducing a family of #-indexed functions,
{FC(0; a;)}e, accompanied with hyper-parameters C defining an ML problem
instance. Machine learning is determining parameter values 6* such that an
objective function &, referring to F'“(#; z), to be optimal. If the optimality
refers to a minimization, then 6* = argmin £(6; {x"}), where {x"} is a dataset
from which some valuable information is derived. An ML program is numerically
solving to obtain §*. They are approximate because F¢ are generally non-linear
and so is £. A learnt model defines a function F(0*; X) to calculate a result
for a new data X. Note that hyper-parameters are constants in the optimization
process. Thus, the parameters @ are dependent on C, . Obtaining optimal C
is one of the major issues, but can be conducted only after software testing is
passed.

From software testing views, ML computer programs can be characterized as
follows. (1) An ML task is declaratively specified as an optimization problem,
from which metamorphic properties are derived. (2) Learning is a process of
obtaining (sub-) optimal parameters, which is solved by numerical searches. It
implies that correct parameter values are not known in advance. (3) The learnt

[]
[]
o © ¢ ¢
o o ¢ N ¢
‘ ‘
/ E
(a) Hyperplane (b) Support Vectors

Fig. 1. Support Vector Machines

result F'(0*; X) with the optimal parameters is an application program, and its
behavior is dependent on the parameter values 6*.

From these observations, the optimization program is what should be tested,
but without known absolute correct results. Thus, that program is a quasi-
testable core with relative correctness criteria. As in existing work [5]7], MT
can be a basis for pseudo oracle for testing ML programs. We will study two
representative problems, because the information that is checked against the
correctness criteria is dependent on ML tasks.

3 Support Vector Machines

A support vector machine (SVM) is a supervised machine learning classifier
(e.g. Chapter 7 in [1]). Figure 1 (b) illustrates the concept of support vectors
as opposed to a naive classifier in Figure 1 (a). The support vectors lie on the
dotted hyperplanes parallel to the resultant separating hyperplane. Margin, a
minimum gap between the support hyperplane and separating hyperplane, is so
chosen to be maximum.

SVM is a constrained optimization problem. Below, (™, ¢™) are data points
(n=1,..., N). 2" is a D-dimensional vector and ¢" is its label of either —1 or
+1. w and b are two parameters defining hyperplanes.

1
argmin | w 1? st. M(wTa" + b) > 1

The problem is turned into a dual representation of a Lagrangian, L(ay, . .., ay),
where o, are Lagrange multipliers. It is actually a soft margin SVM and a hyper-
parameter C' is a measure allowing noise.

argrr&zix anlanfiznzlzmzlanamﬁ e (xx™)

N
st. 0<a, <C(1<n<N), Y, ol =0

The resultant multipliers constitute hyperplane parameters, where S is a set of
indices of the support vectors (Figure 1(b)).

n 1 1 m n n m
w = Znesané ", b = mzmesw - Znesanf (x™-z™))

W

1
XZN\;SC . w)}y = sigmoid(h)

Xq~ —

(a) Perceptron (b) Two Layered Network

Fig. 2. Neural Network

Sequential minimal optimization (SMO) is a standard algorithm to solve SVM
problem numerically. SMO decomposes the optimization problem into a sub-
problem consisting of two data points, W (ay,as), consisting of two Lagrange
multipliers with all the rest to be assumed as constants. W (aq,as3) is analyti-
cally solvable, and the SMO solves it iteratively until solutions converge.

Programs are implementing the SMO algorithm, and are our test target.
We derive metamorphic properties to test them from the Lagrangian £ and
functional behavior of the SMO algorithm. For example, interchanging indices of
two data points, ™ = x™, does not change £, and multipliers are interchanged
as well, @, = a,,, The MR R” is identity for this case. Another interesting
property is Reverse Labels, (™, {™) — (x™, —¢™) for all n. Hyperplane parameters
are changed accordingly, and thus RT = (w™® = —w@)A(bD) = —p(2)),

A metamorphic property Reduce Margin in [5] was effective for testing SVM
programs. The property is a special instance of Inclusive property [7]. Its basic
idea is adding a new data point to the input dataset for enabling corner-case
testing. Because corner cases differ for different ML tasks, Reduce Margin takes
into account the SVM characteristics that the problem is to determine separating
hyperplanes with support vectors. Namely, we put newly added data points near
the existing separating hyperplanes. [5] describes details about it.

4 Neural Networks

A neural network (NN) is a general framework for various machine learning
tasks, regressions or classifiers (e.g. Chapter 5 in [1]). A perceptron (Figure 2
(a)) is a basic unit. Receiving a set of input signals {z;}, it emits a signal y
calculated by applying an activation function o to a weighted sum of its input;
Yy = O’(Z?Zl w;xz;). An NN is a two layered network of perceptrons (Figure 2
(b)). All the input signals are fed into perceptrons in the hidden layer, and then
all the signals from these perceptrons are input to perceptrons in the output
layer. Let h and 7 be two activation functions. Given D-dimensional vector
and M perceptrons consisting of the hidden layer, signals (k = 1,..., R) from

the output layer is mathematically defined as below.

M D
ye (W3 @) =r(Y oggh(d wyim:))
j=0 =0

where v; and wj; are weights, which are compactly written as W.

For a set of input data {(x", ")} (n =1,..., N), NN machine learning is an
optimization problem using a loss function £. Below, cvecy is a R-dimensional
vector of the output signals.

N
EW; {(z",t")}) = %Z |t —y(Wsz") |, argmin E(W;{{z",t")})

A naive algorithm to solve this optimization problem numerically is a steepest
descent method (SD), calculating new weights until the values are converged;
{ wrew) — wlld) _ pgg(We?) } where n (> 0) is a hyper-parameter,
called a learning rate.

A standard learning algorithm employs the back propagation (BP) for cal-
culating VE(W) efficiently. Furthermore, NN training methods adopt several
learning tricks. With the input normalization trick, all components x}* of ™ are
pre-adjusted to follow a normal distribution of Norm(0, 1) for each i. Stochastic
gradient descent (SGD) is a randomized version of the SD. These techniques
complicate the algorithm, and thus make programs difficult to test.

Interpretation of parameters 6 in NN learning is quite different from the
SVM case. In the latter, learning parameters are Lagrange multipliers to define
a hyperplane, which is a good indicator to provide relative correctness criteria.
Contrarily in NN learning, parameters 6 are weights in W. These are just nu-
merical values and define no mathematical object. In addition, NN computer
program executions are characterized by temporal behavior in view of conver-
gence and/or optimality; programs may reach a stable state, but be trapped in
local minimums. Therefore, such behavioral information is an important indica-
tor, which must faithfully represent how W are changed as learning proceeds.
However, a trace of loss function £ or an accuracy for a given testing dataset,
which is usually used, does not represent behavior faithfully. These pieces of
information are influenced by slight changes in input training dataset.

Because the number of weights is very large in general, we cannot analyze
the weights individually. Instead, we calculate statistical averages and deviations.
Let vi;(e) be values at an epoch index e. A difference is that dy;(e) = vy;(e) —
vi;(e —1). We, then, calculate statistical averages (u(e)) and deviations (o2 (e))
of the differences. Both p(e) and o2(e) go to zero when solutions converge. These
values constitute indicator graph with respect to epoch indices. We compared
two graphs, one obtained from a probably correct program and another from a
bug-injected one. The two show quite different behavior when viewed from these
indicators. However, traces of £ showed similar curves.

Because appropriate metamorphic properties are dependent on ML problems,
we studied a problem of recognizing hand-written numerical numbers, a stan-
dard benchmark of MNIST dataset. Interchanging indices of two data points,

T, = X, does not change £. Indicator graphs are the same as well. Addi-
tive property [7], adding a constant to a particular attribute of all data points
(x] — x + b), may have no impact on indicator graphs because the input
normalization takes care of the pre-adjustment appropriately. However, Multi-
plicative property [7] (2} — axx!') may change the shape of indicator graphs
in that the convergence becomes slow.

Because indicator graphs represent temporal changes in statistical summaries
of weight values, RT may be considered a statistical approach, but is different
from statistical oracle [4], which employs statistical hypothesis testing to refute
the correctness of probabilistic programs. NN programs employ a notion of prob-
ability specifically for efficiency reasons. Statistical oracles are used for systems
with inherent randamness.

5 Discussions and Concluding Remarks

Testing is an unknown-unknown task. We do not know whether a program has
bugs or not, and thus may conduct testing in search of non-existing bugs. Nev-
ertheless, a new way of testing is important for ML programs.

As machine learning results are sensitive to slight changes in input training
dataset, changing distribution of data points in the dataset is a key issue for
corner-case testing. This is similar to Machine Teaching [8], which is concerned
with automatic generation of dataset for a given machine learning tasks. The
generated dataset is biased in that ML process converges to given learning pa-
rameter values. Namely, the method is concerned with generating well-biased
critical data points. Our future work includes studying a systematic method for
generating such biased critical data points for corner-case testing.

References

1. C.M. Bishop : Pattern Recognition and Machine Learning, Springer-Verlag 2006.

2. K. Brinker : Incorporating Diversity in Active Learning with Support Vector Ma-
chines, In Proc. 20th ICML, 2003.

3. T.Y. Chen, S.C. Chung, and S.M. Yiu : Metamorphic Testing - A New Approach
for Generating Next Test Cases, HKUST-CS98-01, The Hong Kong University of
Science and Technology, 1998.

4. R. Guderlei, J. Mayer, C. Schneckenburger, and F. Fleischer : Testing Randomized
Software by Means of Statistical Hypothesis Tests, In Proc. SOQUA 2007, pp.46-
54, 2007.

5. S. Nakajima and H.N. Bui : Dataset Coverage for Testing Machine Learning Com-
puter Programs, In Proc. 23rd APSEC, pp.297-304, 2016.

6. E.J. Weyuker : On Testing Non-testable Programs, Computer Journal, 25 (4),
pp-465-470, 1982.

7. X. Xie, JW.K. Ho, C. Murphy, G. Kaiser, B. Xu, and T.Y. Chen : Testing and
Validating Machine Learning Classifiers by Metamorphic Testing, J. Syst. Softw.,
84(4), pp.544-558, 2011.

8. X. Zhu : Machine Teaching: An Inverse Problem to Machine Learning and an
Approach Toward Optimal Education, In Proc. 29th AAAI pp.4083-4087, 2015.

