
Towards a UML Profile for Domain-driven Design
of Microservice Architectures

Florian Rademacher1, Sabine Sachweh1, and Albert Zündorf2

1 University of Applied Sciences and Arts Dortmund,
Institute for Digital Transformation of Application and Living Domains,

44227 Dortmund, Germany,
{florian.rademacher,sabine.sachweh}@fh-dortmund.de,

2 University of Kassel,
Department of Computer Science and Electrical Engineering,

Software Engineering Research Group,
34121 Kassel, Germany,
zuendorf@uni-kassel.de

Abstract. Domain-driven Design (DDD) is a model-driven approach to
software development that focuses on capturing the application domain,
its concepts and relationships in the form of domain models for architec-
ture design. Among others, DDD provides modeling means for decom-
posing a domain into Bounded Contexts and expressing the relationships
between them. With the recent emergence of Microservice Architecture
(MSA), DDD again gains broad attention because a Bounded Context
naturally maps to a Microservice, which enables the application of DDD
for MSA design.
However, DDD is not a formal modeling language. Instead, it leverages
informal UML class diagrams to express domain models, which prevents
model validation and transformation. In this paper we address this limi-
tation by providing an initial UML profile for Domain-driven MSA Mod-
eling. Together with a survey on the UML constructs used in DDD, the
profile denotes a foundation for validating domain models and deriving
Microservice code from them.

Keywords: Domain-driven Design, Microservice Architecture, UML Pro-
file

1 Introduction

Domain-driven Design (DDD) [3] is an approach to software development that
focuses on the application domain, its concepts and their relationships as primary
drivers for architecture design. Core principles of DDD comprise (i) capturing
relevant domain knowledge in domain models that might comprise structural
and behavioral aspects; (ii) collaborative modeling of domain experts and soft-
ware engineers; (iii) fostering experimental design by strictly aligning model and
implementation throughout the software development process as well as contin-
uous model refinement; (iv) fostering communication between domain experts

2 Florian Rademacher, Sabine Sachweh, and Albert Zündorf

and software engineers by jointly defining an explicit ubiquitous language, which
consists of relevant domain-specific terms and is used in both, domain models
and implementation.

As a set of model-driven practices, techniques and principles for software
design, DDD has been defined by Evans in 2004 [3]. With Microservice Archi-
tecture (MSA) as an architectural style for distributed, service-based software
systems [9], that is gaining broad attention of both practitioners and scientists
as of 2014 [13], the relevance of DDD recently increases. This is due to DDD
providing various modeling patterns and techniques for the identification of co-
herent domain concepts and their encapsulation within conceptual boundaries
that might serve as foundation for MSA-based service decomposition [9].

Thereby, Evans proposes to express domain models that capture structural
domain knowledge in the form of UML class diagrams [3]. He therefore leverages
a subset of standard UML elements, which are partially enriched with DDD-
specific semantics to define DDD patterns. However, the pattern definitions lack
a formal, UML-based foundation and sometimes differ in their notations. While
the absence of a formal foundation leads to a high degree of freedom concern-
ing syntaxes and semantics of DDD-specific modeling elements [3], it prevents
structured model operations like validation [16] and transformation [8]. Hence,
further usage of domain models next to being integral parts of stakeholder com-
munication and domain documentation is hampered.

To overcome this limitation, we present an initial, twofold contribution to-
wards a formalization of DDD for Domain-driven MSA Modeling (DDMM).
First, we provide a survey regarding syntaxes, semantics and frequency of UML
elements applied in DDD for capturing domain models. This defines a basic set
of modeling constructs to consider when processing domain models for validation
or transformation purposes. Second, we define a UML profile for DDMM and
discuss its usage to model Microservices and derive interactions between them.

The remainder of the paper is organized as follows. Section 2 gives an overview
of DDD and how it is applied for MSA. Section 3 presents the findings of a liter-
ature survey regarding syntaxes, semantics and occurrences of UML constructs
in DDD domain models. In Sect. 4 we introduce the UML profile for DDMM.
Section 5 presents related work and Sect. 6 concludes the paper.

2 Domain-driven Design

In this section we elaborate on DDD as an approach to abstracting a domain in
the form of structural domain models that describe structure and relationships
of domain concepts [3]. We also describe the Bounded Context pattern that is
commonly proposed for modeling services in MSA [9].

2.1 Structural Domain Models

In DDD, a domain model is a rigorously organized, selective abstraction of con-
ceptual knowledge about a domain or relevant parts of it [3]. Basically, the

Towards a UML Profile for Domain-driven Design of MSA 3

notation to express domain models is not bound to a certain modeling language.
However, Evans proposes to use UML class diagrams to capture structural do-
main models, which leverage UML classes, attributes and methods to model
domain concepts, and UML associations, multiplicities and collection specifica-
tions to express concept relationships. Figure 1 shows a preliminary structural
domain model for a cargo shipping system described in [3].

role

*
goal

Location

port code

Carrier
M o v e m e n t

schedule ID
Delivery Specification

arrival t ime

Handling Event

completion time
type

Delivery History
Customer

name
customer ID

t o

f rom
destination

* 0..1

handled
*

 *
Cargo

tracking ID

Fig. 1. Preliminary structural domain model for a cargo shipping system [3]

Each class represents a domain object, which in DDD is synonymous with
“domain concept” [3]. The model contains the core domain objects and their
relationships. For example, it shows that a Cargo has a tracking ID and is
associated with a set of Customers, each distinguished by its role, e.g. “shipper”
or “receiver”. Assigned to a Cargo is a Delivery History that tracks cargo-
related Handling Events, which might involve at most one Carrier Movement
from a source to a target Location. Furthermore, a Cargo has a goal, i.e. a
Delivery Specification with a destination Location.

On the basis of certain UML class diagram elements, DDD introduces a
variety of patterns to enrich a structural domain model with further semantics
for Model-driven Design [3]. These patterns and their definition by means of the
UML 2.5 metamodel [12] are described in Table 1.

Figure 2 shows an excerpt of the cargo shipping model with refined associa-
tions and extended by a selection of DDD patterns [3].

role

*

«Repository»
Customer Repository

find by name(String)
find by Customer ID(String)

goal

«Repository»
Cargo Repository

find by Tracking ID(String)
find by Customer ID(String)

«Entity»
Location

port code

«Entity»
Carrier

M o v e m e n t

schedule ID

«Value Object»
{aggregateRoot=Cargo}
Delivery Specification

arrival t ime

«Entity»
Handling Event

completion time
type

«Entity»
{aggregateRoot=Cargo}

Delivery History

«Entity»
Customer

name
customer ID

*

*

t o

f rom

 destination

*

0..1
*

handled
*«Aggregate Root,

Entity»
Cargo

tracking ID

Fig. 2. Excerpt of refined cargo shipping model with additional DDD patterns [3]

All domain objects are annotated with pattern-specific stereotypes to identify
them as Entities, Value Objects, Aggregate roots or Repositories [3]. For exam-
ple, the Entity Cargo is also a root for the Aggregates Delivery Specification
and Delivery History, which may only be accessed via the root object. The
Cargo Repository models the retrieval of Cargoes by tracking ID and cus-
tomer ID. While most domain objects are Entities, Delivery Specification
is a Value Object to communicate that two Cargoes might share the same

4 Florian Rademacher, Sabine Sachweh, and Albert Zündorf

Table 1. DDD patterns and their UML 2.5 metamodel [12] equivalents. Note: “An-
notated” stands for any mechanism that allows to assign additional meaning to UML
modeling elements, e.g. stereotypes or comments.

Pattern UML Metamodel
Equivalent

Description

Aggregate Associated Classes
with annotated root
Class

Cluster of associated Entities and Value Objects.
An Aggregate is treated as a whole when being
accessed by referencing its root Entity.

Closure of
Operations

Annotated Operation A Closure’s return type is of the same type as
its arguments and provides an interface without
additional domain object dependencies.

Entity Annotated Class An instance of the domain object is distin-
guished from other instances by its identity.
Identity determination is domain-specific.

Module Annotated Package Encapsulation mechanism whose primary goal is
to reduce cognitive overload in domain models
by partitioning cohesive sets of domain objects.

Repository Annotated Class with
outgoing Associations
to other Classes

Models access to persistent domain object in-
stances via operations that perform instance se-
lection based on given criteria.

Service Annotated Class con-
taining only Opera-
tions

Services encapsulate processes or transforma-
tions that are not in the responsibility of Entities
or Value Objects.

Side-effect-
free Function

Annotated Operation Expresses that a domain object’s Operation does
not have any side effects on a system’s state.

Specification Annotated Class de-
pending on specified
Class

Used to determine if a domain object instance
fulfills a specification. Contains a set of Boolean
Operations to perform specification checks.

Value Object Annotated Class Typically immutable object without domain-
specific identity. Might act as value container.

Delivery Specification, but with most likely differing Delivery Histories.
Otherwise the Cargoes would exhibit the same identity [3].

2.2 Domain-driven Design for Microservice Architecture

In contrast to Service-oriented Architecture (SOA), MSA imposes explicit re-
quirements on service granularity [14]. Each Microservice should realize exactly
one capability of the software system that is clearly distinct from others. The goal
of business-related service decomposition in MSA is to cluster related domain
objects and functionalities in isolated functional Microservices.

For modeling functional Microservices and domain objects exchanged be-
tween these, i.e. shared domain objects, DDD’s Bounded Context pattern is pre-
destined [9] and has become a common means for determining and expressing
MSA-based service granularity prior to service decomposition [2, 4, 5].

Towards a UML Profile for Domain-driven Design of MSA 5

Next to Modules (cf. Table 1), Bounded Contexts are another encapsulation
mechanism of DDD. While Modules solely structure domain objects in different
namespaces, Bounded Contexts define scopes for enclosed domain objects, i.e.
boundaries for object validity and applicability [3].

The boundaries of a Bounded Context typically impact team, code and ap-
plication organization [3]. Only the team responsible for a context may change
its internal structure. It is further responsible for context implementation and
interface provisioning on the basis of shared domain object models. As these re-
sponsibilities correspond to those of a Microservice [9], a Bounded Context pro-
vides the foundation for the domain-specific implementation of a Microservice.
Figure 3 shows a version of the cargo shipping model that has been decomposed
into Bounded Contexts depicted as UML packages.

role

*

t o
f rom

«use»

«Bounded Context»
Cargo

«Service»
Location Service

resolve by port code(String)

«Value Object»
LocationShared

port code

«Bounded Context»
Location

«Repository»
Customer Repository

find by name(String)
find by Customer ID(String)

«Value Object»
CustomerShared

customer ID

«Bounded Context»
Customer

goal

«Repository»
Cargo Repository

find by Tracking ID(String)
find by Customer ID(String)

«Entity»
Location

port code

«Entity»
Carrier

M o v e m e n t

schedule ID
«Value Object»

{aggregateRoot=Cargo}
Delivery Specification

arrival t ime

«Entity»
Handling Event

completion time
type

«Entity»
{aggregateRoot=Cargo}

Delivery History

«Entity»
Customer

name
customer ID

*
«use»

«use»

*

 destination

* 0..1

*

handled
*

*

«Aggregate Root,
Entity»
Cargo

tracking ID

Fig. 3. Cargo shipping model decomposed into several Bounded Contexts

Relationships between the Bounded Contexts are expressed as shared Value
Objects, i.e. instances of CustomerShared and LocationShared act as contain-
ers for exchanging values between contexts (cf. Table 1). Each shared object de-
pends on the Entity it represents, i.e. Customer and Location. For the retrieval
of shared object instances, Cargo uses the existing Customer Repository, while
instances of LocationShared can be requested from the Location context via
the introduced Location Service (cf. Table 1). It dynamically resolves the port
code from a given argument, i.e. Locations are not stored in a Repository.

3 Survey on UML Elements in Domain-driven Design

In the following, we present an overview and characterization regarding syntaxes,
semantics and frequency of UML elements used by DDD to model structural do-
main models. We identified the elements by surveying each of the 92 UML class
diagrams in [3] representing real-world structural domain models. Thereby, we
left out the 29 diagrams showing domain object interactions as they are (i)
modeled with various notations differing in the degree of formality, e.g. object
interaction, UML sequence and domain-specific diagrams; (ii) used to exemplify
interactions between few selected objects rather than in a comprehensive archi-
tectural design; (iii) not applicable for identifying functional Microservices and
their structural relationships (cf. Subsection 2.2).

6 Florian Rademacher, Sabine Sachweh, and Albert Zündorf

Together with the DDD patterns described in Section 2, the UML elements
identified in our survey define a basic set of modeling constructs to be considered
in UML-based DDMM, e.g. when validating domain models or deriving code.

Table 2 shows the results of our survey. It lists each UML element used in
the domain models in [3] and classifies them on the basis of six categories rep-
resenting basic UML concepts, i.e. “Associations”, “Attributes”, “Classes”, “Con-
straints”, “Methods” and “Multiplicities”. We further state the occurrence count
per element, that is the number of domain models comprising it at least once,
as well as its representation with UML 2.5 metaclasses [12] to be considered in
UML-based DDMM. Due to space limitations, we do not present survey results
for modeling constructs used in DDD domain models that are not conform to
UML 2.5 and hence might not be validly expressed leveraging its metamodel,
e.g. abstract attributes or named extensions between classes. As only four out of
92 domain models (4.34%) comprise such elements, we view them as negligible.

Next, we describe category-specific characteristics of conform UML elements.

3.1 Classes

In structural domain models, DDD expresses domain objects as named Classes.
Hence, every domain model contains at least one Class, which makes this el-
ement the predominant UML construct in DDD. Thereby, a Class might be
modeled as being abstract to specify Methods (cf. Subsect. 3.5) that have to be
realized by Sub-classes and enable polymorphism in domain model implementa-
tions. A special case of abstract classes are generalized Specifications (cf. Table 1)
where different instances of a domain object need to satisfy different specifica-
tions, e.g. an Invoice for which two Specifications DelinquentInvoiceSpec
and BigInvoiceSpec inheriting from a general InvoiceSpec are modeled, that
specify a date or a threshold amount, respectively [3].

A DDD Class corresponds to the UML metaclass Classifier. For abstract
Classes, Classifier.isAbstract is set to true.

3.2 Associations

The elements in this category are applied in 87 of the 92 domain models (94.56%),
which makes Associations the second most occurring UML construct in DDD.
Associations are used to specify relationships between exactly two domain ob-
jects. A special form of Associations are Aggregations in the sense of UML shared
aggregations [12], whose semantics depend on application area or modeler. Ag-
gregations group together a set of assigned domain object instances.

Most Associations lack an explicit specification of navigability, which oth-
erwise is always unidirectional. An Association end may exhibit an “ordered”
collection specification and be qualifying to partition a set of assigned instances,
e.g. Customers by their role (cf. Fig. 1).

Next to Associations, the category comprises Inheritance relationships and
Dependencies. Both establish Associations between Classes and are applied cor-
responding to the UML specification of Generalization and Dependency.

Towards a UML Profile for Domain-driven Design of MSA 7

Table 2. Results of surveying the 92 UML class diagrams in [3] for UML elements used
in structural domain models. Table ordering is based on elements’ occurrence count.

Element Category Occurrence Count
Class Classes 92 (100%)

UML Metamodel Representation: Classifier with name. Classifier.isAbstract may
be set to true.

Attribute Attributes 72 (78.26%)
Property with name, type or both. Property.isDerived may be set to true. A Multi-
plicityElement may be used to specify that the Property value is optional.

Multiplicity Multiplicities 67 (72.82%)
MultiplicityElement with ValueSpecification for lowerValue and upperValue.

Non-navigable Association Associations 58 (63.04%)
Association with optional name and without specified navigability. ownedEnd comprises
two possibly named Properties, of which one can have a qualifier. To add a collection
specification, ValueSpecification.isOrdered of an assigned Multiplicity may be true.

Method Methods 49 (53.26%)
Operation with name that may have isAbstract set to true. ownedParameter may
contain Parameters with name, type or both and direction typically set to in. One
Parameter may have it’s direction set to return.
Unidirectional Navigable Association Associations 36 (39.13%)
Association with optional name and one Property in navigableOwnedEnd. ownedEnd
comprises two possibly named Properties with a possible qualifier. To specify a
collection, ValueSpecification.isOrdered of an assigned Multiplicity may be true.

Non-navigable Aggregation Associations 28 (30.43%)
Association without name. ownedEnd comprises two possibly named Properties with
one having aggregation set to shared and a possible qualifier. To specify a collection,
ValueSpecification.isOrdered of an assigned Multiplicity may be true.
“extends” Relationship (Inheritance) Associations 23 (25%)
Generalization relationship between two Classifiers (single inheritance). The specific
Classifier holds a Generalization with general pointing to the general Classifier.

Informal Constraint Constraints 13 (14.13%)
Informal domain-specific constraints like “Itinerary must satisfy specification” may be
specified as names of Associations or Dependencies where client constrains supplier.
Unidirectional Navigable Aggregation Associations 11 (11.95%)
Association without name. ownedEnd comprises two possibly named Properties, with
one being in navigableOwnedEnd, having aggregation set to shared and an optional
qualifier. May have a collection specification like Non-navigable Aggregation.

Formal Constraint Constraints 6 (6.52%)
Formal domain-specific constraints like “Bucket.contents <= Bucket.capacity” may be
specified as (i) body of Comment with annotatedElement being Classifier or Property;
(ii) name of Dependency whose supplier is an Association and client is a Classifier.

Semi-formal Constraint Constraints 3 (3.26%)
Semi-formal domain-specific constraints like “sum of item <= approved limit” are spec-
ified as names of Unidirectional Navigable Associations or Aggregations.

Class Dependency Associations 2 (2.17%)
Dependency without name and both supplier and client being Classifiers.

8 Florian Rademacher, Sabine Sachweh, and Albert Zündorf

3.3 Attributes

Attributes represent structural features of domain objects. For the majority of
Attributes, no type is specified, which increases the level of modeling flexibil-
ity but complicates domain model processing. For example, when generating
code from domain models, e.g. in an object-oriented language like Java, untyped
Attributes might be assigned a generic type like Java’s Object. However, this
prevents type-safety and relies on the semantics of an Attribute being sufficiently
communicated by its name. A facing issue is DDD possibly specifying unnamed
Attributes that only have a type. The meaning of an Attribute may then remain
unclear, especially when its type is not domain-specific, e.g. Double instead of
MoneyAmount [3].

Attributes may be modeled as derived or optional. Thereby, a derivation
specification is missing and optional Attributes’ names are terminated by “(opt)”.

Attributes correspond to the UML metaclass Property. For derived At-
tributes, Property.isDerived is set to true. Optional Attributes may be spec-
ified by assigning a MultiplicityElement to the Property with a lowerValue
of 0 and an upperValue of 1 or *.

3.4 Multiplicities

All occurrences of Multiplicity specifications in domain models conform to UML.
Typically, an Association or Attribute is provided with Multiplicities. Multiplic-
ity specifications correspond to UML’s metaclass MultiplicityElement, whose
properties lowerValue and upperValue reference instances of ValueSpecifi-
cations that represent an Integer and an UnlimitedNatural, respectively.

3.5 Methods

DDD leverages Methods to model the interfaces of domain objects’ behavioral
features. Thus, concrete behavior specifications are omitted and Methods are
only represented by their type signatures. Methods correspond to UML’s meta-
class Operation, possibly comprising a set of Parameters. Parameter names
and types are mutually optional, which is conform to UML but raises the same
issues as for unnamed and untyped Attributes (cf. Subsect. 3.3). Parameters
are modeled as incoming or returning, i.e. with direction set to in or return.

3.6 Constraints

We classify Constraints used by DDD depending on their degree of formality.
Informal Constraints are formulated in natural language and modeled as

names of Associations or Dependencies. In the latter case, the dependent domain
object always constrains the independent object, e.g. a Route Specification
depends on an Itinerary stating that it must satisfy the Specification (cf. [3]
and Table 1). This semantically makes the dependency bidirectional, because
logically Itinerary depends on Route Specification, which it otherwise could

Towards a UML Profile for Domain-driven Design of MSA 9

not satisfy. This can be resolved in that the direction of the modeled Dependency
is reversed, i.e. the specified object depends on the Specification (cf. Section 4).

Semi-formal Constraints are stated in natural language mixed with formal
notations. Like Informal Constraints, they are modeled as names of Associations.

Formal Constraints leverage a formal notation for their constraint expression.
In DDD, they are modeled in the form of Class or Attribute Comments, or, in one
occurrence, as name of a Dependency in which a domain object depends on the
Association between two other domain objects to express that an Overbooking
Policy (the dependent object) ensures that the sum of Cargo sizes does not
exceed a Voyage’s capacity by more than 10 percent [3].

Alternatively, all Constraint types could be modeled as UML Constraints.
This would make their existence more explicit and allow to formally specify
the Constraint’s type. For example, to identify Informal and Semi-formal Con-
straints, an instance of OpaqueExpression with language set to “Natural lan-
guage” could be assigned to Constraint.specification. Formal Constraints
could analogously be expressed in the form of automatically evaluable expres-
sions, e.g. by leveraging the Object Constraint Language (OCL) [11].

4 A UML Profile for Domain-driven Microservice
Architecture Design

This section presents an initial UML profile, which enables the expression of
structural domain models as UML class diagrams by providing stereotypes and
constraints for DDD patterns (cf. Sect. 2).

We decided to apply UML’s profile mechanism [12] as metamodeling technique
[15] for DDMM because (i) in [3], when introducing DDD, Evans expresses struc-
tural domain models as UML class diagrams because he perceived them to be
well understandable by domain experts; (ii) it provides an approach for defining
graphical modeling languages by extending UML’s mature metamodel [17] and
use complementary specifications, e.g. OCL [11] for profile-specific constraint
specification (cf. Subsect. 4.2); (iii) UML is a common modeling language, even
for the design of Microservice architectures [1]; (iv) it enables the usage of ex-
isting UML toolchains suitable for domain experts or software engineers for
DDMM.

A UML profile comprises extensions of UML metaclasses like Class or Prop-
erty in the form of stereotypes [12]. Instances of extended metaclasses might then
be semantically enriched with profile-specific stereotypes. A UML profile might
also define formal constraints that enable automatic validation of profile-based
models, e.g. to verify that stereotypes have been used as intended.

Figure 4 shows all stereotypes of our UML profile for DDMM. The relation-
ship between a stereotype and the metaclasses it extends is depicted as an arrow
with filled arrowhead pointing from stereotype to metaclass [12].

The profile provides stereotypes for all DDD patterns presented in Section 2,
i.e. the ones listed in Table 1 as well as Bounded Contexts. It therefore extends

10 Florian Rademacher, Sabine Sachweh, and Albert Zündorf

«Stereotype»
Module

«Stereotype»
AggregatePart

aggregateRoot : Class

«Stereotype»
AggregateRoot

«Stereotype»
BoundedContext

«Metaclass»
Package

«Stereotype»
Closure

«Stereotype»
SideEffectFree

«Stereotype»
ValidatesSpec

«Stereotype»
Spec

«Stereotype»
Repository

«Stereotype»
Enti ty

«Stereotype»
Service

«Stereotype»
DefinesIdenti ty

«Stereotype»
ValueObject

immutable : Boolean

«Metaclass»
Property

«Metaclass»
Operat ion

«Metaclass»
Class

Fig. 4. Stereotypes of the DDMM UML profile as extensions of UML metaclasses

the UML metaclasses Class, Operation, Package and Property. In the fol-
lowing, we discuss characteristics of the profile concerning differences between
pattern definitions in DDD and the profile, constraints, mapping between profile-
based models and MSA, and the profile’s implementation.

4.1 Differences between Pattern Definitions in Domain-driven
Design and UML Profile

While most of the profile’s stereotypes correspond to their textual definition in
[3], few of them were accompanied by additional stereotypes to formally enable
their DDD-conform application. For example, the DefinesIdentity stereotype
was added to specify which Attributes or Method of an Entity provide identity.

Moreover, the definition of an Aggregate involves the combined application
of the AggregateRoot and AggregatePart stereotypes. The latter is necessary
because in [3] the boundaries of an Aggregate are sketched informally by free-
hand drawings that enclose the Aggregate and its parts. When leveraging the
profile for DDMM, the root of an Aggregate is annotated with AggregateRoot.
Aggregate objects are then assigned to the root by means of the AggregatePart
stereotype and specifying the Aggregate’s root in the aggregateRoot property.

Another difference between its definition in DDD and in the profile exists for
the Specification pattern. First, due to a name conflict with the UML metamodel
[12], the profile’s stereotype for Specifications is abbreviated as Spec. Second,
all predicate-like validation Methods of a Specification [3] need to exhibit the
stereotype ValidatesSpec.

4.2 Profile Constraints

To ensure consistency between profile application and DDD, we added con-
straints to the profile, i.e. restrictions that need to be satisfied by a profile-
based structural domain model to be considered valid. Table 3 describes them
in natural language.

According to [12], all constraints have been formalized by expressing them
in OCL [11]. However, due to lack of space, we only present the OCL code
for constraints C4 and C25 in Listings 1 and 2. The OCL expressions for the
remaining constraints are part of the profile’s implementation (cf. Subsect. 4.4).

Towards a UML Profile for Domain-driven Design of MSA 11

Table 3. Stereotype constraints of the profile following DDD pattern definitions in [3]

Stereotype Constraints based on UML Metamodel

AggregatePart

C1: Only Entities and Value Objects may be Aggregate parts
C2: Assigned Aggregate root must have AggregateRoot stereotype
C3: No incoming Associations from outside the Aggregate
C4: Must be in same Bounded Context as Aggregate root

AggregateRoot
C5: Only Entities may be Aggregate roots
C6: Aggregate must contain at least one part

Entity C7: One Operation or at least one Property defines the identity

Repository
C8: Class has no other stereotypes
C9: Class contains only Operations and at least one
C10: Outgoing Associations must point to Entities or Value Objects

Service
C11: Class has no other stereotypes
C12: Class contains only Operations and at least one

Spec

C13: Class has no other stereotypes
C14: Class contains at least one validation Operation
C15: At least one domain object is specified
C16: Validation Operation has Parameter typed as specified object

Closure
C17: Must not be specification validation or identity Operation
C18: Return Parameter type must conform input Parameter type

DefinesIdentity
C19: Must not be specification validation Operation
C20: May only be applied within Entities

SideEffectFree C21: Operation must have a return Parameter

ValidatesSpec
C22: Must have Boolean-typed return Parameter
C23: May only be applied within Specifications

BoundedContext
C24: Must not have Module stereotype
C25: Must not be nested, i.e. part of another Package

let partPackage = self.base_Class.package in
let root =
self.base_Class.extension_AggregatePart.aggregateRoot in

partPackage <> null and
root <> null and
partPackage.extension_BoundedContext <> null and
partPackage = root.package

Listing 1. OCL code to ensure Aggregate
parts being in same context as root (C4)

let nestingPkg = self.base_Package.nestingPackage in
let pkgStereotypes =
nestingPkg.getAppliedStereotypes() in

nestingPkg = null or
pkgStereotypes−>isEmpty() and
nestingPkg.nestingPackage = null

Listing 2. OCL constraint preventing
nested Bounded Contexts (C25)

4.3 Mapping of Profile-based Structural Domain Models to
Microservice Architecture

In the following, we present initial ideas on how to map structural domain models
applying the profile to conceptual elements of MSA for DDMM. We thereby
focus on coherences between modeled Bounded Contexts and Microservices [2,
4, 5] for the purpose of transforming profile-conform domain models into code.
While [3] describes the implementation of the DDD patterns listed in Table 1,

12 Florian Rademacher, Sabine Sachweh, and Albert Zündorf

a possibly automatic derivation of Microservice code from structural domain
models remains an open question.

An important aspect of mapping a Bounded Context and its encapsulated
domain objects to a Microservice implementation is the determination of the
service interfaces on the basis of context relationships. For example, in Fig. 3 the
Customer Bounded Context shares a reduced form of its Customer Entity, which
is modeled as a shared Value Object named CustomerShared that depends on the
Customer Entity and is outside the context. As the shared object is referenced
from the Cargo context, a Microservice for the Customer context needs to provide
an interface that exposes Customers as instances of CustomerShared.

Moreover, in the domain model in Fig. 3, the signatures of interface opera-
tions as well as service provider and requester may be identified on the basis of us-
age dependencies between Bounded Contexts. For example, Carrier Movement
from the Cargo context uses the Location Service from the Location con-
text, which has access to a set of Location Entities, to retrieve shared model
instances of these. Thus, a service for the Location context needs to provide an
interface to a Cargo service that adapts the signature of the Location Service.

While the described mappings of Bounded Context relationships to Microser-
vice interfaces are intuitive, several questions arise when taking the potential
informality of structural domain models in DDD into account. First, besides
Bounded Context relationships in the form of Associations between fragmented,
probably shared domain objects, none of the surveyed domain models comprises
constructs that specify technical characteristics of context interfaces for subse-
quent service implementation (cf. Section 3). Among these are the assignment
of protocols and message formats to prospective interface operations, as well as
an approach for stating the type of action performed by an operation, e.g. read
or update. Additionally, when modeling service calls as «use»-Dependencies in
which the supplier has more than one Operation that returns the same shared
model type, it cannot be unambiguously determined, which of the Operations
the client invokes for shared model instance retrieval, e.g. for the Cargo object
in Fig. 3 find by name or find by Customer ID from Customer Repository.

Another open question concerns the handling of Associations between context-
internal domain objects and shared models. For example, in Fig. 3 Carrier
Movement is associated with LocationShared. However, as Carrier Movement
is an Entity and probably gets persisted when a Cargo Microservice proceeds [3],
an approach is needed for keeping LocationShared (and hence Location) and
Carrier Movement instances persistently associated. This includes retrieval of
shared model instances when Carrier Movement is reinstantiated, with consid-
ering that the Location might since have been deleted by a Location service.

Furthermore, DDD lacks a construct for specifying how a domain object is
transformed into a shared model representation, e.g. in Fig. 3 CustomerShared
does not comprise the Customer’s name. As an initial approach, a code genera-
tor for the UML profile could yield stubs for operations that transform domain
object instances into their shared representations. However, then the consistency
between model and code needs to be ensured for future model refinements.

Towards a UML Profile for Domain-driven Design of MSA 13

A last aspect stems from DDD being a modeling technique focused on ex-
pressing core domain parts rather than achieving model completeness. In case
two shared models of the same domain object are modeled, it cannot be un-
ambiguously determined which shared representation a derived service interface
returns when the retrieval operations of the underlying provider objects, e.g.
Repositories or Services, do not specify a return type.

4.4 Implementation

We have implemented an initial version of the UML profile that comprises all
stereotypes and constraints presented in Fig. 4 and Subsect. 4.2 on the basis
of Eclipse and the Papyrus modeling environment3. The current version can be
found on GitHub4. Fig. 5 shows the Cargo context from Fig. 3 and its relationship
to LocationShared modeled with Papyrus and applying the profile.

Fig. 5. Excerpt of the Cargo context modeled with Eclipse Papyrus and the profile

5 Related Work

We discuss work related to employing UML class diagrams for DDD as well as
the design of service-based software systems leveraging UML profiles and DDD.

In [7], a DDD-based approach is presented that leverages meta-attributes
(MAs) as annotation mechanism for UML class diagrams representing structural
domain models with the goal to enable capturing domain-specific requirements.
MAs reflect domain-specific abstractions that may be directly mapped to code
by using built-in extension mechanisms of the programming language, e.g. Java
annotations. They are modeled as classes with attributes, whose values correlate
to property values of code annotations, and are associated with domain model
elements. This approach differs from the application of our UML profile. First,
MAs instead of stereotypes are used to annotate domain models. While this
is UML-conform, extending domain models with additional MA classes enlarges
their structure and may complicate understanding. This effect is mitigated when

3https://www.eclipse.org/papyrus
4https://github.com/SeelabFhdo/ddmm-uml-profile

14 Florian Rademacher, Sabine Sachweh, and Albert Zündorf

using a UML profile as its application might be flexibly hidden from a UML di-
agram [12]. Second, MAs do not enable constrained expression of DDD patterns
(cf. Table 1). Instead, MAs map to UML metaclasses like Classifier. Third,
to foster semantic understanding of domain experts, MAs partially capture in-
formation being already part of the model, e.g. the name Property of a DAttr
MA specifies the name of a modeled domain object Attribute. Our approach as-
sumes that domain experts are already able to read basic UML class diagrams.
Fourth, existing UML tools may not semantically differentiate between MAs
and domain objects as both are UML classes without specific stereotypes. This
hampers automatic validation of annotated structural domain models.

SoaML [10] is a UML profile and metamodel from the OMG for model-driven
engineering of service-based systems. It defines modeling elements to describe,
e.g., services, interfaces and data exchange, and addresses SOA, which charac-
teristically differs from MSA [14]. However, SoaML provides an extensive set
of constructs for modeling service interfaces and interactions our profile might
draw on (cf. Subsect. 4.3). Thereby, it would be crucial to balance the techni-
cal needs of MSA architects and developers with the profile’s applicability for
domain experts, which is central to DDD but not one of SoaML’s primary goals.

In [6] the Romulus approach for the development of service-based software
systems is presented. It integrates a metaframework that enables the enrichment
of Java-based domain models with annotations to provide services. Thereby,
the first step in Romulus is to identify domain objects that reside in different
Bounded Contexts. Like with the presented UML profile, domain models are ex-
pressed as class diagrams and, conceptually, a Bounded Context may be mapped
to a service. However, no specific UML notation on how to express DDD ele-
ments in domain models is presented. Instead, domain models are implemented
as semantically annotated plain Java objects. Thereby, annotations do not ex-
press DDD concepts but complement a domain model with technical aspects like
view representation and validation. MSA is not explicitly covered.

6 Conclusion and Future Work

In this paper we introduced an initial UML profile that aims at enabling the mod-
eling of Microservice systems by leveraging Domain-driven Design [3]. Therefore,
we first presented DDD and its patterns, with Bounded Context being central
for modeling Microservice candidates (cf. Sect. 2). In Sect. 3, DDD was charac-
terized by means of a literature survey, which comprised each of the 92 structural
domain models in [3]. It identified syntaxes, semantics and occurrences of UML
class diagram constructs used to capture domain models. Together with the
DDD patterns, these UML elements define an initial set of modeling elements,
which need to be considered in UML-based DDMM, e.g. for model validation
or transformation purposes. In Sect. 4 we presented a UML profile for DDMM,
which integrates constrained stereotypes for all mentioned DDD patterns. We
also discussed initial thoughts on how to map profile-based domain models to
Microservices with considering the findings of our survey (cf. Subsect. 4.3).

Towards a UML Profile for Domain-driven Design of MSA 15

In future works we plan to implement a code generator for producing MSA
code from profile-based domain models. We therefore focus on transforming
Bounded Contexts into services with regard to deriving service interfaces from
associations between domain objects of different contexts. With the code gener-
ator, we plan to evaluate the profile’s applicability for both software engineers
and domain experts, as well as the generators efficiency.

References
1. Alshuqayran, N., Ali, N., Evans, R.: A systematic mapping study in microservice

architecture. In: Proc. of the 9th Int. Conf. on Service-Oriented Computing and
Applications (SOCA). pp. 44–51. IEEE (2016)

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables de-
vops: Migration to a cloud-native architecture. IEEE Software 33(3), 42–52 (2016)

3. Evans, E.: Domain-Driven Design. Addison-Wesley (2004)
4. Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O.: Service cutter: A sys-

tematic approach to service decomposition. In: Aiello, M., Johnsen, E.B., Dustdar,
S., Georgievski, I. (eds.) Proc. of the 5th European Conf. on Service-Oriented and
Cloud Computing (ESOCC). LNCS, vol. 9846, pp. 185–200. Springer (2016)

5. Hassan, S., Ali, N., Bahsoon, R.: Microservice ambients: An architectural meta-
modelling approach for microservice granularity. In: Proc. of the Int. Conf. on
Software Architecture (ICSA). pp. 1–10. IEEE (2017)

6. Iglesias, C.A., Fernández-Villamor, J.I., del Pozo, D., Garulli, L., García, B.: Ser-
vice Engineering, chap. Combining Domain-driven Design and Mashups for Service
Development, pp. 171–200. Springer (2011)

7. Le, D.M., Dang, D.H., Nguyen, V.H.: Domain-driven design using meta-attributes:
A dsl-based approach. In: 8th Int. Conf. on Knowledge and Systems Engineering
(KSE). pp. 67–72. IEEE (2016)

8. Mens, T., Van Gorp, P.: A taxonomy of model transformation. Electronic Notes
in Theoretical Computer Science 152, 125–142 (2006)

9. Newman, S.: Building Microservices. O’Reilly Media (2015)
10. Object Management Group: Service oriented architecture modeling language

(SoaML) specification Version 1.0.1 (formal/2012-05-10) (2012)
11. Object Management Group: Object constraint language (OCL) Version 2.4

(formal/2014-02-03) (2014)
12. Object Management Group: OMG unified modeling language (OMG UML) Version

2.5 (formal/2015-03-01) (2015)
13. Pahl, C., Jamshidi, P.: Microservices: A systematic mapping study. In: Proc. of the

6th Int. Conf. on Cloud Computing and Services Science (CLOSER). pp. 137–146
(2016)

14. Rademacher, F., Sachweh, S., Zündorf, A.: Differences between model-driven de-
velopment of service-oriented and microservice architecture. In: International Con-
ference on Software Architecture Workshops (ICSAW). pp. 38–45 (2017)

15. Rodrigues Da Silva, A.: Model-driven engineering: A survey supported by the uni-
fied conceptual model. Computer Languages, Systems and Structures 43, 139–155
(2015)

16. Seidewitz, E.: What models mean. IEEE Software 20(5), 26–32 (2003)
17. Selic, B.: A systematic approach to domain-specific language design using uml. In:

Proc. of the 10th Int. Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC). pp. 2–9. IEEE (2007)

