Towards a reference dataset of
microservice-based applications

Antonio Brogi, Andrea Canciani, Davide Neri,
Luca Rinaldi, and Jacopo Soldani

Department of Computer Science, University of Pisa, Italy

Abstract. The microservice-based architectural style is rising fast in
enterprise IT. Tools and solutions for supporting microservices-based
applications are proliferating. It is however often difficult to qualita-
tively/quantitatively assess and compare such tools and solutions, also
because of the lack of reference datasets of microservice-based applica-
tions. The objective of this paper is precisely to set the ground of a first
reference dataset of microservice-based applications.

1 Introduction

The microservice-based architectural style proposes to develop “a single appli-
cation as a suite of small services, each running in its own process and commu-
nicating with lightweight mechanisms, often an HTTP resource API” [6]. Each
microservice implements a precise business capability, and it can be deployed and
scaled independently from all other microservices forming an application [9I18].

Microservices are already pervading enterprise IT [3]. Various companies are
already delivering their business services with microservice-based applications,
with Amazon and Netflix being the most prominent examples. As a consequence,
researchers and practitioners are rushing to provide an adequate support to such
companies. This resulted in a rapid proliferation of heterogeneous tools and
solutions (e.g., Docker Compose [4], Apache Mesos [16], Kubernetes [17]), which
aim at offering an enhanced support for developing, deploying, and /or managing
microservice-based applications [3].

It is however often difficult to assess and compare existing solutions, as well
as to show that a newly proposed solution is actually enhancing the support
already provided by its competitors (e.g., by supporting additional functional-
ities, or by running the same business with better performances). This is also
due to the lack of reference datasets of microservice-based applications. Such
datasets would indeed permit developing a set of repeatable experiments for
evaluating a solution (e.g., an orchestrator of microservice-based applications),
or for comparing it with other existing solutions [I1].

The main objective of this paper is to set the ground of uSET, a first refer-
ence dataset of microservice-based applications. The uSET dataset will permit
assessing and evaluating a solution offering support for microservice-based appli-
cations. It will indeed provide a set of microservice-based applications, each per-
mitting to evaluate a solution qualitatively (viz., by checking whether it supports

one or more desired functionalities) and/or quantitatively (viz., by measuring its
performances). We also present a first set of microservice-based applications that
are already included in pSET.

Beside checking whether a solution supports desired functionalities with de-
sired performances, the applications contained in puSET will be exploitable by
practitioners and researchers in two other ways. On the one hand, uSET dataset
will permit performing a systematic comparison of existing solutions. The lat-
ter will then ease the choice of the most appropriate solution for developing, or
managing a microservice-based application. On the other hand, ySET dataset
will permit developing a set of repeatable experiments, to show that a newly
proposed solution actually enhances the support provided by its competitors.

The rest of the paper is organised as follows. Sect. [2 presents the design of uSET,
as well as the microservice-based applications it already contains. Sect. 3| presents
an example of evaluation based on the applications currently available in pSET.
Sects. 4] and || discuss related work and provide some concluding remarks.

2 The useT dataset

We hereby present the design of the uSET dataset of microservice-based appli-
cations. The main requirements driving the design and population of uSET are
the following:

— All applications in uSET will be publicly available.

— WSET will contain applications easy to understand and manage, as this will
simplify setting up repeatable experiments based upon them.

— All applications in puSET will permit evaluating a solution qualitatively (by
checking whether it supports a desired functionality) or quantitatively (by
measuring the performances of a solution).

To satisfy the first requirement, we implemented pSET as a public GitHub repos-
itoryﬂ We also started populating the dataset with a first set of microservice-
based applications that, much in the spirit of unit testing [13], we crafted “ad-
hoc” to test the support of a specific functionality.

More precisely, we selected five functionalities that are crucial for support-
ing microservice-based applications. Namely, we selected the functionalities to
support communication between microservices [6], fault resilience [10], hori-
zontal scalability [6], replaceability of a microservice [9], and extensibility of a
microservice-based application [9].

We then defined five categories of microservice-based applications (viz., com-
munication support, fault resilience, horizontal scalability, replaceability, and ex-
tensibility), one for each of the above mentioned functionalities. Each category
will contain microservice-based applications aimed at “unit testing” whether/how
a solution supports the corresponding functionality. For instance, an application

! nttps://github.com/di-unipi-socc/microset.

https://github.com/di-unipi-socc/microset

in the horizontal scalability category can be used both to (qualitatively) check
whether a solution supports horizontal scalability and to (quantitatively) mea-
sure the performances of such solution when scaling its microservices (e.g., time
and resources needed to scale in/out a microservice).

We then developed one application for each category, each designed to be as
simple as possible (but not simpler). We hereafter present such applications, by
first explaining their rationale, by describing the applications themselves, and by
finally showing an example of how they permit checking whether an orchestrator
of microservice-based applications supports the corresponding functionalities.

2.1 Communication support

Rationale. Microservices need to communicate each other via lightweight mech-
anisms, often being HTTP resource APIs. Any solution aiming to support micro-
service-based applications should hence provide functionalities to support com-
munication between microservices.

Description. The communication-support application is composed by two mi-
croservices, viz., backend and frontend (Fig. . The backend microservice offers

frontend ——http—) backend

Fig. 1. Microservices in the communication-support application.

an HTTP API. The latter exposes just one operation, requiring no input param-
eters, and returning a JSON object containing a randomly generated number.
The microservice frontend offers an HTTP endpoint, through which it serves
automatically generated HTML pages. Whenever a client connects to frontend,
the latter invokes the API of backend. If backend answers to frontend, frontend
returns an HTTP 200 response containing a HTML page rendering the informa-
tion obtained from backend. Otherwise, frontend returns an HTTP 500 error.

Exzample of test. An orchestrator of microservice-based applications supports
communication if it can deploy and interconnect frontend and backend, so that
one can afterwards connect to frontend, and frontend returns an HTTP 200
response. If frontend instead returns an HTTP 500 error, this means that it is
not able to communicate with backend.

2.2 Fault resilience

Rationale. Microservice-based applications should be designed by taking into
account that their microservices may fail. Any solution supporting microservices-
based applications should hence manage failures by allowing to restart failed
microservices.

Description. fault-resilience is composed by a single microservice (app),
which can be used to check whether a solution is capable to manage a micro-
service failure (Fig. . app is designed to fail after a given period of time (10
seconds, by default).

app | T % s—> | app

Fig. 2. Failure behaviour of the microservice app in the fault-resilience application.

Example of test. An orchestrator of microservice-based applications supports
failures if it can automatically restart app whenever it fails. This can be tested
by checking whether app is running and responding right after the failure period
is expired.

2.3 Horizontal scalability

Rationale. Microservices are independently deployable and scalable by defini-
tion. Being able to horizontally scale a microservice is fundamental to improve
the performances of a microservice-based application.

Description. horizontal-scalability is a microservice-based application de-
signed to check whether a solution can deal with the horizontal scaling of a
microservice. It is composed by two microservices, consumer and producer, com-
municating via HTTP.

consumer _
http
consumer —http— producer | =—> | consumer (—http— producer
) http
consumer

Fig.3. An example of how to scale the number of microservices in the hori-
zontal-scalability application.

The producer is a web service generating a finite stream of random numbers,
and offering an endpoint to consume the numbers in the stream. The consumer
is a script iteratively invoking the endpoint offered by the producer. Each time a
consumer invokes such endpoint, the producer returns the next number available
in the stream, until all numbers have been consumed.

The producer also records the time interval needed to consume all numbers
and the amount of different consumers that have required at least a number.

Fig. [3| shows an example of how to scale the microservices in horizontal-
scalability. Initially, only one consumer and one producer are running. The
number of consumers is then increased to three, to reduce the time needed to
consume the stream.

Exzample of test. An orchestrator of microservice-based applications supports
horizontal scalability if it permits changing the amount of running consumers.
This can be tested, for instance, by scaling the consumers as in Fig [3] and by
checking that the producer returns 3 as the amount of different consumers that
consumed at least a numberfl

2.4 Replaceability

Rationale. Replaceability is the ability to replace a microservice with an-
other microservice offering the same functionality. Solutions that aim to support
microservice-based applications should hence permit replacing a microservice
independently of the others.

Description. replaceability is a microservice-based application that permits
checking whether a solution supports the replaceability of a microservice with
another. It is composed by two microservices, viz., frontend and backend (Fig. |4).

frontend i—http—a backend, | =— | frontend }»http—t backend,

Fig. 4. Two consecutive configurations of replaceability application.

The backend microservice offers an HTTP API endpoint that returns a ran-
domly generated number each time is called. It is available in two different imple-
mentations, namely backend; and backends. backend; returns only even random
numbers, while backend, returns only odd numbers.

The frontend microservice serves HTML pages. Whenever a client connects
to frontend, the latter invokes the API of the backend. If the backend answers
to frontend, then frontend returns an HTTP 200 response containing an HTML
page rendering the information obtained from backend. Otherwise, frontend re-
turns an HTTP 500 error.

Exzample of test. An orchestrator of microservice-based applications supports
replaceability if, after deploying frontend with backend,;, it permits replacing
backend, with backends without restarting or reconfiguring the frontend. More-
over, when the backend; is deployed, the frontend must return even numbers,
while with backends the frontend must return odd numbers.

2 The length of the stream can be configured so that all consumers can consume at
least one number.

2.5 Extensibility

Rationale. Extensibility is the ability to add and integrate a new microservice
in a microservice-based application independently of its other microservices. So-
lutions offering support for microservice-based applications should hence permit
adding a new microservice in a existing application (without requiring to recon-
figure the other microservices in such application).

Description. extensibility is a microservice-based application composed by
three microservices, viz., frontend;, frontends, and backend (Fig. |5). The back-

frontend, ~http

sl] =5 =
/http

frontend,

Fig. 5. Two consecutive configurations of the extensibility application.

end microservice offers an HTTP API, which exposes one operation returning a
JSON object containing a randomly generated number.

frontend; and frontendy invoke the API of backend to get a randomly gener-
ated number, but they implement two different operations. frontend; returns the
largest prime factor of the number received from the backend. frontends checks
whether the number received from the backend is prime or not. Both frontend;
and frontends render the response in a HTML page.

Example of test. An orchestrator of microservice-based applications supports
extensibility if, after deploying frontend; and backend, it is possible to add
frontends without touching the other components. Afterwards, both frontend;
and frontends must return an HTTP 200 response (when invoked), as this means
that they can communicate with backend.

3 WSET at work

In order to test whether a solution (e.g., an orchestrator of microservice-based
applications) supports a functionality, it is first required to select an application
from puSET that test such functionality and then build a test on top of it. The test
should check whether the solution permits describing the application, running it
and finally verifying that application behaves as expected. This testing approach
can be iterated over all the functionalities which are considered by the uSET
dataset consider, in order to determine the functionalities provided by a solution.

We now show how we used the above approach to check whether Docker
Composeﬂ supports all functionalities discussed in Sect. |2| (viz., communication
support, fault resilience, horizontal scalability, replaceability, and extensibility)

We specified each microservice-based application of uSET in Docker Compose
by means of a compose file (which combines the containers packaging the micro-
services forming an application). We then developed a set of test scripts, each
executing the compose file of an application and checking whether the corre-
sponding functionality is supportedﬂ Below we provide some additional details
on the test we developed, and we discuss the results we obtained.

Communication support. We created a compose file that specifies the two
containers packaging frontend and backend, and the connection link from fron-
tend to backend. We created a test script that runs such compose file (to build,
start, and interconnect frontend and backend). It then performs a HTTP request
to frontend, and it checks whether the latter returns a HTTP 200 response.

Docker Compose passed the test we created. This is because it deploys first
the container of backend and then the container of frontend, and since it creates
a bridge network allowing such containers to communicate.

Fault resilience. We created a compose file that defines a container packaging
the app microservice, and we indicated that such container must be restarted
whenever it exits with an error (by setting the option restart of the container
of app to on-failure). We created a test script that runs the above mentioned
compose file, and which checks whether the container of app is restarted by
Docker Compose after its first failure (by invoking app and verifying that it
returns an HTTP 200 response).

Docker Compose passed the above explained test. This is thanks to option
restart: on-failure of the container of app, which instructs Docker Compose
to automatically restart such container whenever it fails.

Horizontal scalability. We created a compose file that defines the two con-
tainers packaging producer and consumer. We also created a test script that ex-
ploits such compose file to first run one producer and one consumer, and which
then scales the number of consumers up to three (by using the docker-compose
scale command). The script also verifies that three different consumers actually
interacted with the producer.

Docker Compose passed also this test. It indeed natively supports the hori-
zontal scalability of the containers forming an application, which can be scaled
out/in by executing the docker-compose scale command.

Replaceability. We created a compose file that defines the two containers pack-
aging frontend and backend, by also indicating that the actual implementation

3 Docker Compose is an engine which permits deploying and managing multi-container
Docker applications. Docker Compose permits describing the components of an ap-
plication by using a compose file (specification file written in YAML). It is possible
to find more information at [14].

4 All compose files and test scripts are available in the GitHub repository of juSET.

of backend is backend;. We then created a copy of such compose file, and we
modified such copy by substituting the actual implementation of backend (from
backend; to backends). Finally, we created a test script that first executes the
initial compose file (hence running frontend and backend;), and which checks
that the actual implementation of backend can be changed from backend; to
backends by running the modified compose file.

Docker Compose passed also the above test. It can indeed detect the changes
that occurred in the compose file describing a running application. Such changes
are then processed by re-building and re-deploying only the containers they affect
(without touching the other containers in the application).

Extensibility. We created a compose file describing the containers packaging
frontend; and backend. We then created a copy of such compose file, and we
modified such copy by adding the container packaging frontends. We created a
test script that first executes the initial compose file (hence deploying frontend;
and backend), and it then executes the modified compose file (to add frontends).
Afterwards, the scripts checks whether frontends is actually added to the appli-
cation (without touching the other containers).

Docker Compose passed the test we developed. It can indeed detect that new
containers are added to the compose file describing a running application, which
are processed by building and deploying only such containers.

Summary. We developed five tests, from which Docker Compose turned out to
support all functionalities covered by the applications currently in uSET.

4 Related work

The need for reference datasets allowing to set up repeatable experiments is
widely recognised in computer science [8/12]. For instance, SPEC (Standard Per-
formance Evaluation Corporation) is working since 1988 to produce, establish,
maintain, and endorse a standardised set of performance benchmarks for com-
puter systems [15]. Concrete examples are the reference applications contained
in SPEC CPU2006 and SPEC Cloud_IaaS 2016. The former are designed to pro-
vide performance measurements that can be used to compare compute-intensive
workloads on different computer systems. The latter instead measure the perfor-
mances laaS platforms, by stressing provisioning and runtime aspects of a cloud
using I/O and CPU intensive workloads.

Other examples are MiBench [7] and PARSEC [I] which provide reference ap-
plications for evaluating embedded systems and shared-memory systems, respec-
tively. DataGov [19] instead offers hundreds of thousands of reference datasets
for evaluating approaches for information retrieval/data mining.

A reference dataset allowing to evaluate solutions for supporting microservice-
based applications is however, to the best of our knowledge, missing. There exist
some demo applications (such as the Sock Shop [20], or those available on even-
tuate.io [5]), which could be used to compare different solutions based on their
performances. Such applications are however designed to demonstrate specific

solutions, and this makes them unsuitable to evaluate the actual performances
of different and heterogeneous solutions.

The dataset we propose (viz., uSET) can hence provide a first reference for
evaluating and comparing solutions offering support for microservice-based ap-
plications. pSET is indeed designed to permit evaluating different and hetero-
geneous solutions, both qualitatively (by allowing to check whether a solution
supports a certain functionality) and quantitatively (by providing a reference to
measure the performances of a solution).

Finally, there exists orthogonal approaches (e.g., [2]) that permit testing
microservice-based applications. uSET, instead, permits testing solutions suppor-
ting the analysis/deployment/management of microservice-based applications.

5 Conclusions

Microservices are pervading enterprise I'T, with various companies already de-
livering their business services with microservice-based applications. To provide
an adequate support to these companies, researchers and practitioners are work-
ing day-by-day on enhancing the current support for developing, deploying and
managing microservice-based applications. The result is an increasing number of
heterogeneous solutions, offering similar functionalities in a different manner [3]
(e.g., Docker Compose [4], Apache Mesos [16], Kubernetes [I7]).

It is often difficult to choose the most appropriate solution fitting our needs,
namely a solution offering the functionalities needed by our microservice-based
applications with the desired performances. It is also difficult to give evidence
that a newly proposed solution is actually enhancing the support provided by
its competitors (e.g., by supporting additional functionalities, or by running the
same business with better performances). This is because it is difficult to develop
a set of repeatable experiments that can be used to evaluate a solution, and to
compare its evaluation with respect to that of its competitors [T1].

The puSET dataset proposed in this paper starts tackling this issue, by propos-
ing an easy-to-use, reference dataset of microservice-based applications. Such
dataset will indeed be exploitable to develop repeatable experiments evaluat-
ing solutions qualitatively and/or quantitatively. Its aim is indeed to provide
microservice-based applications that permit checking whether a solution sup-
ports a desired functionality or measuring its performances (e.g., measuring the
time and resources needed to add a new microservice to an already running
application, to detect when a microservice fails, and to scale a microservice).

The population of uSET is currently ongoing. puSET already includes a first set
of microservice-based applications, which are designed to “unit test” whether a
solution provides some fundamental functionalities needed by microservice-based
applications. It however requires to be extended to include other applications for
checking functionality support (both for already selected functionalities and for
functionalities yet to be selected), as well as more complex applications (crafted
or taken from real deployments) that permit measuring the performances of a
solution. We plan to continue extending pSET dataset as part of our immediate

future work, and we are willing to involve other practitioners and researchers in
this extension process.

Finally, it is worth noting that uSET can be used not only to evaluate a single
solution, but also to perform a systematic comparison of existing solutions. Solu-
tions can indeed be evaluated by exploiting the microservice-based applications
that will be contained in uSET, and this would provide enough information to
compare them based on the functionalities and performances they provide. Such
a comparison would then be very useful when looking for the most appropriate
solutions for a microservice-based application. We hence plan to exploit puSET to
systematically compare existing solutions as part of our future work.

References

1. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: Char-
acterization and architectural implications. In: Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques. pp. 72—
81. PACT ’08, ACM (2008)

2. de Camargo, A., Salvadori, I., Mello, R.d.S., Siqueira, F.: An architecture to auto-
mate performance tests on microservices. In: Proceedings of the 18th International
Conference on Information Integration and Web-based Applications and Services.
pp. 422-429. iiWAS 16, ACM (2016)

3. Di Francesco, P., Malavolta, 1., Lago, P.: Research on architecting microservices:
Trends, focus, and potential for industrial adoption. In: 2017 IEEE International
Conference on Software Architecture (ICSA). pp. 21-30. IEEE Computer Society
(2017)

4. Docker, Inc.: Docker-compose. https://docs.docker. com/compose/| (last accessed
on June 16th, 2017)

5. Eventuate, Inc.: FEventuate example applications. http://eventuate.io/
exampleapps.html| (last accessed on June 16th, 2017)

6. Fowler, M., Lewis, J.: Microservices. ThoughtWorks, https://martinfowler.com/
articles/microservices.html (last accessed on June 16th, 2017)

7. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,

R.B.: MiBench: A free, commercially representative embedded benchmark suite.

In: Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE In-

ternational Workshop. pp. 3-14. WWC ’01, IEEE Computer Society (2001)

Myers, G.J., Sandler, C.: The Art of Software Testing. John Wiley & Sons (2004)

9. Newman, S.: Building microservices. O’Reilly Media, Inc. (2015)

10. Nygard, M.: Release It!: Design and Deploy Production-Ready Software. Pragmatic

Bookshelf (2007)

11. Pahl, C.; Jamshidi, P.: Microservices: A systematic mapping study. In: Proceedings
of the 6th International Conference on Cloud Computing and Services Science -
Volume 1 and 2. pp. 137-146. CLOSER 2016, SCITEPRESS (2016)

12. Roper, M.: Software Testing. McGraw-Hill, Inc. (1995)

13. Runeson, P.: A survey of unit testing practices. IEEE Software 23(4), 22—29 (2006)

14. Smith, R.: Docker Orchestration. Packt Publishing (2017)

15. Standard Performance Evaluation Corporation (SPEC): Benchmarks. http://
www . spec.org/benchmarks.html| (last accessed on June 16th, 2017)

16. The Apache Software Foundation: Mesos. http://mesos.apache.org/ (last ac-
cessed on June 16th, 2017)

o

https://docs.docker.com/compose/
http://eventuate.io/exampleapps.html
http://eventuate.io/exampleapps.html
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
http://www.spec.org/benchmarks.html
http://www.spec.org/benchmarks.html
http://mesos.apache.org/

17.

18.
19.

20.

The Kubernetes Authors: Kubernetes. https://kubernetes.io/| (last accessed on
June 16th, 2017)

Thones, J.: Microservices. IEEE Software 32(1), 113-116 (2015)

U.S. Government: Data.Gov - The home of the U.S. Governments open data.
https://wuw.data.gov (last accessed on June 16th, 2017)

Weaveworks, Inc.: Sock shop. https://microservices-demo.github.io| (last ac-
cessed on June 16th, 2017)

https://kubernetes.io/
https://www.data.gov
https://microservices-demo.github.io

	Towards a reference dataset of microservice-based applications

