
Towards a Taxonomy of Microservices Architectures

Martin Garriga

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy
martin.garriga@polimi.it

Abstract. The microservices architectural style is gaining more and more mo-
mentum for the development of applications as suites of small, autonomous, and
conversational services, which are then easy to understand, deploy and scale.
However, the proliferation of approaches leveraging microservices calls for a
systematic way of analyzing and assessing them as a completely new ecosys-
tem: the first cloud-native architectural style. This paper defines a preliminary
analysis framework in the form of a taxonomy of concepts, encompassing the
whole microservices lifecycle, as well as organizational aspects. This framework
is necessary to enable effective exploration, understanding, assessing, comparing,
and selecting microservice-based models, languages, techniques, platforms, and
tools. Then, we analyze state of the art approaches related to microservices using
this taxonomy to provide a holistic perspective of available solutions.

1 Introduction

Microservices is a novel architectural style that tries to overcome the shortcomings of
centralized, monolithic architectures [1,2], in which application logic is encapsulated in
big deployable chunks. In contrast, microservices are small components, built around
business capabilities [3], that are easy to understand, deploy, and scale independently,
even using different technology stacks [4]. Each runs in a dedicated process and com-
municates through lightweight mechanisms, often a RESTful API.

Several companies have recently migrated, or are considering migrating, their ex-
isting applications to microservices [5], and new microservice-native applications and
support tools are being conceived. While the adoption of this architectural style should
help one address the typical facets of a modern software system: for example, its dis-
tribution, coordination among parts, and operation, some aspects are still blurred [6].
Like traditional developers, microservice adopters would benefit from a comprehen-
sive support for the whole microservices lifecycle. All in all, the increasing number of
microservice-based approaches calls for a systematic way to analyze and assess them
as a completely new ecosystem: the first cloud-native architectural style [7].

In this context, this paper defines a preliminary analysis framework that captures
the fundamental understanding of microservice architectures in the form of a taxonomy
of concepts, encompassing the whole microservices lifecycle, as well as organizational
aspects. This framework enables effective exploration, understanding, assessing, com-
paring, and selecting microservice-based models, languages, techniques, platforms, and
tools. We carried out an analysis of state of the art approaches (28 in total) related to mi-
croservices using the proposed taxonomy to provide a holistic perspective of available
solutions.



The rest of the paper is organized as follows. Section 2 defines microservices ar-
chitectures. Section 3 details the proposed taxonomy, and the analysis of state of the
art approaches according to it. Section 4 discusses open challenges distilled from the
previous analysis. Section 5 concludes the paper.

2 Microservices Architectures

The most widely adopted definition of microservices architectures is “an approach for
developing a single application as a suite of small services, each running in its own
process and communicating with lightweight mechanisms, often an HTTP API” [1].In
contrast to monoliths, microservices foster independent deployability and scalability,
and can be developed using different technology stacks [4].

However, this definition can be applied to traditional or RESTful services as well,
which feeds the debate regarding microservices and SOA (Service-oriented Architec-
tures). Although microservices can be seen as an evolution of SOA, they are inherently
different regarding the sharing and reuse aspects. SOA is built on the concept of foster
reuse: a share-as-much-as-possible architecture style, whereas microservices architec-
ture is built on the concept of a share-as-little-as-possible architecture style [8]. Given
that service reuse has often been less than expected [9], instead of reusing existing mi-
croservices for new tasks or use cases, they should be “micro” enough to allow rapidly
developing a new one that can coexist, evolve or replace the previous one according to
the business needs [10].

3 A Taxonomy of Microservices Architectures

The first step to delineate the taxonomy comprised a literature review, following the
guidelines for Systematic Literature Review (SLR) proposed in [11]. Although a SLR
is outside the scope of this work, this helped us to organize the process of finding
and classifying relevant literature. We searched for articles indexed in Scopus, Sci-
ence Direct, IEEE Xplore, ACM Digital Library, SpringerLink, Google Scholar and
Wiley Online. The search strings used were “microservice[s]”, “microservice[s] archi-
tecture[s]”, “cloud-native architecture[s]”. The search comprised articles published up
to 2016 (inclusive). Then, we applied snowballing [12], by looking for relevant ref-
erences included in the works previously found, in order to identify other potential
works. As microservices is a very recent topic, we considered journal, conference and
workshop publications. Finally, we suppressed duplicated papers from the results, since
the search engines and databases are overlapped to a certain extent. After these steps,
the initial collection consisted of 64 potentially relevant works from which we per-
formed a detailed, qualitative analysis in order to exclude different papers of the same
authors/group, incrementally reporting their results, and certain works that used the
term “microservices” with a different meaning.

From this analysis we refined a collection of 46 relevant work1, classified as: pri-
mary studies, that is, literature investigating specifically the research question (using mi-
croservices, proposing microservice-oriented frameworks, tools or architectures); and

1 Due to the space limit, the full list can be found in: https://goo.gl/j5ec4A



secondary studies, that is, literature reviewing primary studies (surveys, reviews and
comparative studies assessing microservices or microservice-based approaches).

The former group (28 approaches, summarized in Table 1) became the target of our
analysis (discussed in Section 4), while the latter was used to identify the concepts (and
disambiguate their definitions) that are potentially relevant for the taxonomy. Addition-
ally, we enriched this taxonomy by leveraging our previous experience with classifica-
tion frameworks in the context of SOA, both for traditional Web Services [39] and the
most recent RESTful services [40]. Figure 1 presents the taxonomy of concepts that
are defined below. For most of the concepts it is not possible to provide an exhaustive
list of possible values, due to the wide (and growing) variety of approaches. Thus, we
included other as a possible value for completeness.

Design implies thinking about the boundaries of microservices that will maximize their
upsides and avoid some of the potential downsides, focused on loose coupling and high
cohesion as the two key principles of SOA. The architects face this set of decisions,
together with the possible choices, at the earliest stage of the lifecycle. The design space
can be represented in a textual or graphical form, by means of architectural concepts.
Design encompasses the following sub-concepts:

– Design approaches means the preexistence (or absence) of legacy software that
should be transitioned to a microservices architecture, constraining its design [2]. Pos-
sible values: brownfield, greenfield.

– Design practices to handle the complexity of microservices architectures into de-
sign time [41,42]. Possible values: domain-driven design, design for failure, other.

– Architectural support describing the obligations/constraints to be fulfilled by the
microservices system, and how to apply them into a dynamic context environment [43].
Possible values: reference architectures, model-driven design, other.

Implementation implies being aware of program complexity, due to the thousands of
microservices running asynchronously in a distributed computer network: programs
that are difficult to understand are also hard to write and modify [23]. Also, the imple-
mentation should allow continuous evolution, which is often required by the application
domain. Although implementation decisions are correlated with the (cloud) deployment
of the architecture, we divided them for the sake of presentation. Thus, implementation
encompasses the following:

– Technology Stack:
Languages “the right tool for the right job” [44], since microservices foster

polyglot languages. Possible values: formal (using formal languages to some extent),
scripting, object-oriented, ad-hoc (developing a new language for microservices).

Interaction Models refers to the communication flow among components. Possi-
ble values: synchronous, asynchronous.

Data Exchange are the protocols used to represent the communication [44].
Possible values: REST/HTTP, RPC-alike, message queues, other.

– Service Interfaces are the different means of specifying contracts (if any) for the
communication of microservices [45]. Possible values: formal (defined through a for-
mal contract), tech-tied (the interface is tied to the implementation technology), ad-hoc
(defined in a novel language).



Table 1. Microservices primary approaches

Id Reference Key Points

01 Kratzke et al. [13] Tradeoffs of containerized microservices and Software Defined
Networks (SDNs).

02 Balalaie et al. [4] Experience report and migration patterns for migration to microser-
vices and DevOps.

03 Bogner et al. [14] Microservices integration from the enterprise architectures point of
view.

04 Toffetti et al. [7] Cloud-native applications definition, self-managing monitoring and
scaling.

05 Ciuffoletti [15] Monitoring-as-a-service for microservices.
06 Florio et al. [16] Autonomic and self-adaptable containerized microservices.
07 Gabbrielli et al. [17] Self-reconfiguring microservices using the ad-hoc Jolie Redeploy-

ment Optimizer tool.
08 Gadea et al. [18] Reference architecture to propagate database changes through mi-

croservices.
09 Guo et al. [19] PaaS Architecture based on microservices and containers.
10 Gysel et al. [20] Systematic approach to decompose a monolith into microservices.
11 Heorhiadi et al. [21] Failure testing framework for microservices.
12 Kecskemety et al. [22] Methodology to split traditional SOA architectures in microser-

vices.
13 Liu et al. [23] Agents-oriented language and IDE for developing microservices.
14 Grieger et al. [24] Model-driven integration of microservices and self-adaptation with

models at runtime.
15 Safina et al. [25] Data-driven workflows based on microservices, defined in the ad-

hoc language Jolie.
16 Nikol et al. [26] Multi-tenancy microservice composition by adapting traditional

BPEL workflows.
17 Rahman et al. [27] Automated acceptance testing architecture for Behavior Driven De-

velopment (BDD).
18 Savchenko et al. [28] A framework and platform for microservices validation and testing.
19 Sousa et al. [29] Multi-cloud architecture with automatic selection of cloud

providers for microservices deployment.
20 Stubbs et al. [30] Fully decentralized solution to the microservices discovery problem

using Docker, Serfnode and gossip protocol.
21 Sun et al. [31] Extension to container’s network hypervisor, enabling flexible mon-

itoring and policy enforcement for microservices.
22 Villamizar et al. [32] Infrastructure cost comparison using monolithic and different mi-

croservices deployments on the cloud.
23 Yahia et al. [33] Event-driven lightweight platform for microservice composition,

based on a DSL for describing orchestration.
24 Bak et al. [34] Context- and location-based microservices for mobile and IoT.
25 Levcovitz et al. [35] Identification and extraction of candidate microservices in a mono-

lith by dependency graphs of modules and database tables.
26 Meinke et al. [36] Learning-based testing to evaluate the functional correctness and

robustness of distributed microservices.
27 Viennot et al. [37] Middleware model for heterogeneous data-driven microservices in-

tegration.
28 Amaral et al. [38] Comparison between two models to deploy containerized microser-

vices: master-slave and nested-container.



Fig. 1. Microservices Taxonomy



– Supporting Systems:
Data Storage usually integrated multiple services in legacy systems, but in mi-

croservices architectures it is mandatory to find seams in the databases and use the
right technologies to split them out cleanly [3]. Possible values: SQL, graph-oriented,
document-oriented, other.

Service Discovery should allow clients to make requests to a dynamically chang-
ing, large set of transient service instances [30]. Possible values: client-driven (querying
a service registry), server-driven (API gateway, load balancer).

Deployment encompasses how and where services are actually hosted and deployed.
Although the cloud has been adopted as the de-facto platform for microservices [44],
there are several alternatives into and out of the cloud.

– Platform can be customized due to privacy, security or business constraints. Pos-
sible values: public cloud, private cloud, in-house.

– Management encompasses the responsive reaction to failures and changing en-
vironmental conditions, minimizing human intervention [7]. Possible values: built-in
cloud services (e.g., AWS Cloudwatch and Autoscaling), third-party services (e.g.,
Rightscale, New Relic), ad-hoc solutions (i.e., tied to the particular approach).

Runtime requires extra effort and attention given the number of independent compo-
nents, log files and interactions, which can affect latency and reliability [3]. Certain
microservices should be deployed and run together, and then monitored in order to de-
tect performance degradation and perform (if possible), the self-adaptation actions to
correct the behavior of the system.

– Virtualization encompasses the different degrees of platform abstraction, isola-
tion and sharing. Possible values: virtual machines (VMs), containers, serverless (i.e.,
Functions-as-a-Service [46]), no virtualization.

– Control loops or MAPE loops (monitor-analyize-plan-execute) allow for different
degrees of self-adaptation. This is challenging in a distributed setting since the overall
system behavior emerges from the localized decisions and interactions. In our view,
approaches can implement one or more stages of the control loop. Possible values:
monitoring, analysis, planning, execution.

– Verification & Validation at runtime, concern the quality assessment of microser-
vices throughout their lifecycle [47]. Possible values: models (at runtime), properties,
other.

Crosscutting Concerns mostly regard QoS aspects that have to be tracked within the
microservices lifecycle, supported by the infrastructure through specific artifacts and
independent of individual microservices.

– Availability and Resilience imply handling both service-level failures and low-
level failures that demand for persistence and recovery techniques [45]. Possible values:
resilience patterns, fault injection, error-handling policies, resilience tests, other.

– Reliability refers to a system that is capable of perform well without halting,
according to its requirements, and is fault-tolerant. This is particularly challenging for
distributed microservices, threatened by integration and message passing mechanisms.
Possible values: edge servers [4], type checking [25], reliability services [31,37], other.



– Maintaintability can be plainly defined by the premise “you build it, you run it”
which claims for a better understanding of business capabilities, roles and operational
details [48]. Possible values: service templates, models at runtime, other.

– Security vulnerabilities are those of SOA [45], plus the high distribution and
network complexity that pose additional difficulty in debugging, monitoring, auditing
and forensic [31]. Possible values: security contracts, private cloud, other.

– Scalability and elasticity refer to the capability to rapidly adjust the overall ca-
pacity of the platform by adding or removing resources, also minimizing human inter-
vention [7]. Possible values: vendor-provided, autonomic MAPE loops, configuration
servers, other.

– Tool Support should be provided given the program complexity, performance crit-
icality and evolutive characteristics of microservices [3] . Possible values: design, pro-
gramming/developing, testing, deployment/operation.

Organizational Aspects are crucial since organizations produce designs which are
copies of their communication structures. Thus, a siloed organization will produce a
siloed-system, while a DevOps one [4], with development and operations teams orga-
nized around business capabilities and collaboration (cross-functional teams) will be
able to produce well-bounded microservices [1,8]. Although this concept is less tech-
nical when compared with the previous ones, it is important to understand the com-
plex “organizational rewiring” scenarios that need to be faced when transitioning to
microservices [49], which may imply continuously adapting both the organization and
the architecture, and understand and mediate new requirements and concerns. Possible
values: DevOps, Continuous delivery/deployment/integration practices, other.

Table 2 and Table 3 summarize the analysis of the 28 approaches according to the
taxonomy in Figure 1. The following section discusses the findings and implications of
such an analysis.

4 Discussion and open research challenges

Design approaches are equally distributed between brownfield (9) and greenfield (7).
The design phase is mainly supported through reference architectures and model-driven
design. However, despite the hype and the business push towards microservitization,
there is still a lack of academic efforts regarding the design practices and patterns [10].
Design for failure and design patterns could allow to early address challenges as to bring
responsiveness (e.g. by adopting “let-it-crash” models), fault tolerance, self-healing
and variability characteristics. Resilience patterns such as circuit-breaker and bulkhead
seem to be key enablers in this direction. It is also interesting to understand whether the
design using a stateless model [50] can affect elasticity and scalability as well [43].

Another problem at design time is finding the right granularity level of microser-
vices, which implies a tradeoff between size and number of microservices [10]. In-
tuitively, the more microservices introduced into the architecture, the higher the level
of isolation between the business functionalities, but at the price of increased network
communications and distribution complexity. Addressing this tradeoff systematically is
essential for assessing the extent to which “splitting” is beneficial regarding the poten-
tial value of microservitization.



Table 2. Characterization of microservice approaches (Part 1)

Concept Value Approaches Total

Design

Approach
Brownfield 02,03,

04,10,12,16,21,22,25
9

Greenfield 06,07,08,13,15,23,27 7

Practices
DDD 10,22 2
Design for Failure 11 1
Other 17 1

Architectonic
support

Design Patterns 02,15 2
Reference Architecture 03,05,08,09 4
Model-driven Design 13,14,16,19,27 5
Other 10 1

Implemen-
tation

Tech./
Languages

Semi-formal 03,05,16,25 5
Object-oriented 02,05,22 3
Scripting 11,23,28 3
Ad-hoc 07,10,12,13,14,15,17,

19,21,23
9

Tech./Intera-
ction Model

Synchronous 02,05,16,22,25,27,28 7
Asynchronous 13,23,25 3

Tech./ Data
Exchange

REST/HTTP 01,02,06,08,10,11,21,
22,23,24

10

RPC-alike 05,10,21,25 4
Other 13,20 2
Message Queues 26,27 2

Service
Interfaces

Formal 05,08,14,16 4
Tech-tied 02 2
Ad-hoc 06,07,10,11,12,18,23 7

Supp. Syst./
Storage

SQL 02,22,24,25,27 5
NoSQL 08,27 2
Graph-oriented 27 1
Document-oriented 27 1
Other 15,27 2

Supp. Syst./
Discovery

Client-side (discovery
registry)

02, 04, 05 3

Server-Side
(APIgateway/LB)

13 1

Hybrid 20 1

Deploy-
ment

Platform
Public Cloud 04,06,07,08,11,12,

19,21,24
9

Private Cloud 04,06,13,18,19 5
In-house 09,28 2

Management
built-in cloud services 22 1
third-party services 02,18 2
ad-hoc solution 04,05,06,07,08,09,12,13,

14,16,19,20,23,27
14



Table 3. Characterization of microservice approaches (Part 2)

Concept Value Approaches Total

Runtime

Virtualization

Virtual Machines 01,04,07,12,13, 19,
21,22,28

9

Containers 01,02,04,05,06,07,08,09,
11,12,14,16,19,20,22,28

16

Serverless 22 1
No virtualization 01,07,28 3

Control Loop
(MAPE-K)

Monitoring 05,06,08,14,20,21,24,26 8
Analysis 06,08,14,26 4
Planning 06,26 2
Execution 06,26 2
Shared Knowledge 06 1

Verification &
Validation

Models 03,14,19,26 4
Properties 15 1
Other 05,11,17,18,24 5

Cross-
cutting
Concerns

Availability
(resilience)

Patterns 02,11,20 3
Fault Injection 11,26 2
Error-handling Policies 23 1
Resilience Tests 11 1
Other 04,10,27 3

Reliability

Edge servers 02 1
Type Checking 15 1
Reliability Services 21,27 2
Other 04,13 2

Maintainability
Service Templates 02 1
Models@Runtime 14 1
Other 15 1

Security
Security Contracts 21 1
Private Orchestrators 23 1
Other 10 1

Scalability
(elasticity)

Vendor-provided 04,21,22,27 4
Auto. MAPE loop 06 1
Configuration Server 02,07 2
Other 02,27 2

Tool Support

Design 03,09,10,13,16,25 6
Programming 09,13,15 3
Testing tools 09,11,17,18,26,28 6
Deployment/Operation 02,05,07,09, 16,19,27 7

Organizational Aspects DevOps 02,07,24 3
CD/CI/CM 02,13,18 3



Implementation approaches mostly define their own, ad-hoc languages (9) for program-
ming microservices or defining different parts of their architecture (e.g., in the form of
DSLs). Some of those provide semi-formal support, by embracing standards such as
MOF (Meta Object Facility) [14] or OCCI (Open Cloud Computing Interface) [15]. In-
terestingly, microservices architectures are intuitively associated to lightweight, script-
ing languages such as JavaScript or Python, which is not reflected explicitly in the
analyzed literature [44].

Regarding the interaction model, the vast majority choose the synchronous one
(7) rather than the asynchronous (3). Interestingly, microservices are most suitable for
asynchronous communication, bringing performance, decoupling and fault-tolerance,
but the paradigm shift implied has not been overtaken yet in practice. Synchronous
request-response model is still easier to understand and implement, and much common
in monolith systems (brownfield) but hinders decentralization, availability and perfor-
mance. The transition from synchronous to asynchronous models calls for further anal-
ysis.

RESTful HTTP communication is the most widespread data exchange solution (10),
being the de-facto standard to implement microservices. Message queues is not as
adopted as expected, in concordance with the lack of proposals adopting asynchronous
interaction models. Regarding interfaces, their ad-hoc definition (7) is the rule. This
suggests not only that microservices are being used in-house, with contracts negotiated
between different teams/people inside the company, but also that they are not supposed
to be reused but to be (re)developed entirely from scratch to fulfill new requirements.
The recent efforts on standardizing RESTful APIs through OpenAPI specifications2

seem interesting and also applicable to specify microservices [51].
Finally, SQL is still the common choice for storage (5) even considering the benefits

and hype for NoSQL databases (5 among the different options). This can be related to
the fact that brownfield approaches inherit legacy databases and their migration is not
straightforward. This also opens a question mark regarding the splitting and migration
of data to fully exploit microservices advantages of data governance and data locality.
Finally, discovery approaches are not so common (4), which suggests that more research
is needed in this topic, given its importance in microservice architectures [30].

Deployment appears as a broadly discussed topic in the literature. Public cloud is the
de-facto standard for deploying microservice applications (9) which confirms the in-
creasing adoption of XaaS platforms. For deployment management, several approaches
(14) propose their own ad-hoc solutions. There seems to be a mistrust regarding built-in
services of cloud providers, which sometimes result too rigid [52] or cumbersome to
configure and adjust [50]. However, these solutions are growing in variety and usability
(e.g., AWS offering around 1000 new features per year3), and we believe that they will
become the standard to deploy and manage cloud microservices in the near future.

Runtime shows that containers and microservices seems to be the perfect marriage (16).
Even though, virtual machines are also widespread (9). However, only one approach

2 https://www.openapis.org/
3 https://techcrunch.com/2016/12/02/aws-shoots-for-total-cloud-domination/



considered serverless functions, also known as Functions-as-a-Service or FaaS4. FaaS
appeared as a disruptive alternative that delegates the management of the execution en-
vironment of application functionality (in the form of stateless functions) to the infras-
tructure provider [46]. However these new solutions bring together new challenges5,
among others: determine the sweetspots where running code in a FaaS environment
can deliver economic benefits; automatically profile existing code to offload computa-
tion to serverless functions; bring adequate isolation among functions; determine the
right granularity for functions to exploit data and code locality; and provide methods to
handle state (given that functions are stateless by definition).

Only one approach provides the full control loop to manage microservice applica-
tions at runtime, while the vast majority provide monitoring facilities (8) with other pur-
poses rather than self-adaptation (e.g., profiling, verification, service discovery). Verifi-
cation & Validation at runtime is not yet widespread among microservices approaches,
which calls for further research. Some approaches provide static V&V at model level
(4), while a few provide dynamic testing and monitoring.

Crosscutting Concerns. Regarding availability and resilience, a few approaches (3) use
resilience patterns6 such as circuit breaker and bulkhead, while others provide their ad-
hoc availability solutions [7]. Reliability is another aspect that calls for coverage (4).
The challenges regarding reliability come from the microservices integration mecha-
nisms: network integration and message passing is unreliable [45]. Maintainability is
not particularly addressed (3), even if in practice an abuse of the freedom of choice
(polyglot languages and persistence) could result in a chaos in the system and make it
even unmaintainable [4]. Consequently, it is important to investigate how standards,
good practices, processes and frameworks can help to organize (and automate) mi-
croservices maintainability.

Security is not extensively addressed (3), even though the microservices ecosystem
makes monitoring and securing networks very challenging due to the myriad of small,
distributed and conversational components: microservices are often designed to com-
pletely trust each other, therefore the compromise of a single microservice may bring
down the entire application [31]. The main on-going trends in security are either mon-
itoring techniques for SDNs inspired by their physical counterparts TAP (Test Access
Point) and SPAN (Switch Port Analyzer), which can then be combined with a policy en-
forcement infrastructure [31]; or application-based security approaches7, which gather
information to build ad-hoc application profiles and then use them to detect anomalous
patterns. Surprisingly, only a few approaches addressed scalability, with four of them
relying in the cloud vendor to achieve it. Again, the adoption of serverless functions
can go one step beyond on this concern, since once deployed, the cost and effort in
operation, scaling and load balancing these functions are reduced to zero.

Finally, various approaches provided tool support for the different activities. A few
of them for programming activities, mostly relying in well known IDEs as common so-

4 https://martinfowler.com/articles/serverless.html
5 https://blog.zhaw.ch/icclab/research-directions-for-faas/
6 http://microservices.io/patterns/
7 E.g., Netflix Fido – https://github.com/Netflix/Fido



lution. For the rest of the lifecycle, design activity (6) is supported, for example, through
an ad-hoc PaaS [19], a decomposition tool based on cross-cutting concerns [20], and a
design tool to define multi-tenant BPEL-based microservices [26]. Testing (6) is sup-
ported through a resilience testing framework [21], and a tool to generate and manage
reusable acceptance tests [27]. Finally, Deployment/Operation (7) is supported through
a reconfigurator for the ad-hoc language Jolie [17], and a tool for automatic setup of
multi-cloud environments for microservices [29].

Organizational Aspects are not fully or explicitly addressed yet, with 3 approaches
mentioning the adoption of DevOps (which implies an organizational rewiring, equiv-
alent to the adoption of Agile methodologies) and other 3 adopting only certain key
practices (Continuous Delivery, Integration, Management). It would be interesting to
link more explicitly microservices with the DevOps movement. DevOps seems to be
a key factor in the success of this architectural style [4], by providing the necessary
organizational shift to minimize coordination among the teams responsible for each
component and removing the barriers for an effective, reciprocal relationship between
the development and operations teams.

Additionally, the literature reports different socio-technical patterns to ease organi-
zational rewiring [49], which can pave the ground for the transition towards microser-
vices. For example, Sociotechnical-Risks Engineering, where critical architecture ele-
ments remain tightly controlled by an organization and loosely coupled with respect to
outsiders; or Shift Left, where organizational and operational concerns (for example,
development-to-operations team mixing) are addressed earlier (“left”) in the life cycle
toward architecting and development.

5 Conclusions

Microservices architectures are fairly new, but their hype and success is undeniable.
This paper presented a preliminary analysis framework that captures the fundamental
understanding of microservices architectures in the form of a taxonomy of concepts, en-
compassing the whole microservices lifecycle, as well as organizational aspects. This
framework is necessary to enable effective exploration, understanding, assessing, com-
paring, and selecting microservice-based models, languages, techniques, platforms, and
tools. We carried out an analysis of state of the art approaches related to microservices
using the proposed taxonomy to provide a holistic perspective of available solutions.

Additionally, from the results of the literature analysis, we identified open chal-
lenges for future research. Among them, the early use of resilience patterns to design
fault-tolerant microservice solutions, the standardization of microservice interfaces, and
the development of asynchronous microservices. Special attention should be given to
the latent use of serverless architectures to deploy and manage microservices. They
have the potential to become the next evolution of microservices [53], to event-driven,
asynchronous functions, because the underlying constraints have changed, costs have
reduced, and radical improvements in time to value are possible.



References

1. J. Lewis and M. Fowler, “Microservices,” 2014. Retrieved from:
http://martinfowler.com/articles/microservices.html.

2. M. Fowler, “Monolith first,” 2015. Retrieved from:
http://martinfowler.com/bliki/MonolithFirst.html.

3. S. Newman, Building Microservices. O’Reilly Media, Inc., 2015.
4. A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture enables devops:

Migration to a cloud-native architecture,” IEEE Software, vol. 33, no. 3, pp. 42–52, 2016.
5. C. Richardson, “Microservices architecture,” 2014. Retrieved from:

http://microservices.io/articles/whoisusingmicroservices.html.
6. F. George, “Challenges in implementing microservices,” 2015. http://gotocon.com/dl/goto-

amsterdam-2015/slides/FredGeorge _ChallengesInImplementingMicroServices.pdf.
7. G. Toffetti, S. Brunner, M. Blöchlinger, J. Spillner, and T. M. Bohnert, “Self-managing cloud-

native applications: Design, implementation, and experience,” Future Generation Computer
Systems, vol. In Press, 2016.

8. M. Richards, “Microservices vs. service-oriented architecture,” 2015. O’Reilly Media.
9. N. Wilde, B. Gonen, E. El-Sheik, and A. Zimmermann, Emerging Trends in the Evolution of

Service-Oriented and Enterprise Architectures, ch. Approaches to the Evolution of SOA Sys-
tems. Intelligent Systems Reference Library, Springer International Publishing Switzerland,
2016.

10. S. Hassan and R. Bahsoon, “Microservices and their design trade-offs: A self-adaptive
roadmap,” in IEEE International Conference on Services Computing (SCC), pp. 813–818,
IEEE, 2016.

11. B. Kitchenham, “Guidelines for performing systematic literature reviews in software engi-
neering,” in Technical report, Ver. 2.3 EBSE Technical Report. EBSE, sn, 2007.

12. C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replication in
software engineering,” in Proceedings of the 18th international conference on evaluation
and assessment in software engineering, p. 38, ACM, 2014.

13. N. Kratzke, “About microservices, containers and their underestimated impact on network
performance,” Proceedings of CLOUD COMPUTING, vol. 2015, pp. 165–169, 2015.

14. J. Bogner and A. Zimmermann, “Towards integrating microservices with adaptable enter-
prise architecture,” in 2016 IEEE 20th International Enterprise Distributed Object Comput-
ing Workshop (EDOCW), pp. 1–6, Sept 2016.

15. A. Ciuffoletti, “Automated deployment of a microservice-based monitoring infrastructure,”
Procedia Computer Science, vol. 68, pp. 163–172, 2015.

16. L. Florio and E. Di Nitto, “Gru: An approach to introduce decentralized autonomic behavior
in microservices architectures,” in Autonomic Computing (ICAC), 2016 IEEE International
Conference on, pp. 357–362, IEEE, 2016.

17. M. Gabbrielli, S. Giallorenzo, C. Guidi, J. Mauro, and F. Montesi, “Self-reconfiguring mi-
croservices,” in Theory and Practice of Formal Methods, pp. 194–210, Springer, 2016.

18. C. Gadea, M. Trifan, D. Ionescu, and B. Ionescu, “A reference architecture for real-time
microservice api consumption,” in Proceedings of the 3rd Workshop on CrossCloud Infras-
tructures & Platforms, p. 2, ACM, 2016.

19. D. Guo, W. Wang, G. Zeng, and Z. Wei, “Microservices architecture based cloudware de-
ployment platform for service computing,” in Service-Oriented System Engineering (SOSE),
2016 IEEE Symposium on, pp. 358–363, IEEE, 2016.

20. M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, “Service cutter: A systematic
approach to service decomposition,” in European Conference on Service-Oriented and Cloud
Computing, pp. 185–200, Springer, 2016.



21. V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar, “Gremlin: systematic
resilience testing of microservices,” in Distributed Computing Systems (ICDCS), 2016 IEEE
36th International Conference on, pp. 57–66, IEEE, 2016.

22. G. Kecskemeti, A. C. Marosi, and A. Kertesz, “The entice approach to decompose monolithic
services into microservices,” in High Performance Computing & Simulation (HPCS), 2016
International Conference on, pp. 591–596, IEEE, 2016.

23. D. Liu, H. Zhu, C. Xu, I. Bayley, D. Lightfoot, M. Green, and P. Marshall, “Cide: An in-
tegrated development environment for microservices,” in IEEE International Conference on
Services Computing (SCC), pp. 808–812, IEEE, 2016.

24. M. Derakhshanmanesh and M. Grieger, “Model-integrating microservices: A vision paper.,”
in Software Engineering (Workshops), pp. 142–147, 2016.

25. L. Safina, M. Mazzara, F. Montesi, and V. Rivera, “Data-driven workflows for microservices:
Genericity in jolie,” in IEEE International Conference on Advanced Information Networking
and Applications (AINA), pp. 430–437, IEEE, 2016.

26. G. Nikol, M. Träger, S. Harrer, and G. Wirtz, “Service-oriented multi-tenancy (so-mt):
Enabling multi-tenancy for existing service composition engines with docker,” in Service-
Oriented System Engineering (SOSE), 2016 IEEE Symposium on, pp. 238–243, IEEE, 2016.

27. M. Rahman and J. Gao, “A reusable automated acceptance testing architecture for microser-
vices in behavior-driven development,” in Service-Oriented System Engineering (SOSE),
2015 IEEE Symposium on, pp. 321–325, IEEE, 2015.

28. D. I. Savchenko, G. I. Radchenko, and O. Taipale, “Microservices validation: Mjolnirr plat-
form case study,” in Information and Communication Technology, Electronics and Micro-
electronics (MIPRO), 2015 38th International Convention on, pp. 235–240, IEEE, 2015.

29. G. Sousa, W. Rudametkin, and L. Duchien, “Automated setup of multi-cloud environments
for microservices-based applications,” in 9th IEEE International Conference on Cloud Com-
puting, 2016.

30. J. Stubbs, W. Moreira, and R. Dooley, “Distributed systems of microservices using docker
and serfnode,” in International Workshop on Science Gateways (IWSG), pp. 34–39, IEEE,
2015.

31. Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-service for microservices-based cloud appli-
cations,” in Cloud Computing Technology and Science (CloudCom), 2015 IEEE 7th Interna-
tional Conference on, pp. 50–57, IEEE, 2015.

32. M. Villamizar, O. Garcés, L. Ochoa, H. Castro, L. Salamanca, M. Verano, R. Casallas, S. Gil,
C. Valencia, A. Zambrano, et al., “Infrastructure cost comparison of running web applica-
tions in the cloud using aws lambda and monolithic and microservice architectures,” in Clus-
ter, Cloud and Grid Computing (CCGrid), 2016 16th IEEE/ACM International Symposium
on, pp. 179–182, IEEE, 2016.

33. E. B. H. Yahia, L. Réveillère, Y.-D. Bromberg, R. Chevalier, and A. Cadot, “Medley: An
event-driven lightweight platform for service composition,” in International Conference on
Web Engineering, pp. 3–20, Springer, 2016.

34. P. Bak, R. Melamed, D. Moshkovich, Y. Nardi, H. Ship, and A. Yaeli, “Location and context-
based microservices for mobile and internet of things workloads,” in Mobile Services (MS),
2015 IEEE International Conference on, pp. 1–8, IEEE, 2015.

35. A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique for extracting microservices
from monolithic enterprise systems,” in 3rd Brazilian Workshop on Software Visualization,
Evolution and Maintenance (VEM), pp. 97–104, 2015.

36. K. Meinke and P. Nycander, “Learning-based testing of distributed microservice architec-
tures: Correctness and fault injection,” in International Conference on Software Engineering
and Formal Methods, pp. 3–10, Springer, 2015.



37. N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and J. Nieh, “Synapse: a microservices archi-
tecture for heterogeneous-database web applications,” in Proceedings of the Tenth European
Conference on Computer Systems, p. 21, ACM, 2015.

38. M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder, “Performance
evaluation of microservices architectures using containers,” in Network Computing and Ap-
plications (NCA), 2015 IEEE 14th International Symposium on, pp. 27–34, IEEE, 2015.

39. M. Garriga, A. Flores, A. Cechich, and A. Zunino, “Web services composition mechanisms:
A review,” IETE Technical Review, vol. 32, no. 5, pp. 376–383, 2015.

40. M. Garriga, C. Mateos, A. Flores, A. Cechich, and A. Zunino, “Restful service composition
at a glance: A survey,” Journal of Network and Computer Applications, vol. 60, pp. 32–53,
2016.

41. E. Evans, Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2004.

42. A. Homer, J. Sharp, L. Brader, M. Narumoto, and T. Swanson, Cloud Design Patterns: Pre-
scriptive Architecture Guidance for Cloud Applications. Microsoft patterns & practices,
2014.

43. G. Casale, C. Chesta, P. Deussen, E. Di Nitto, P. Gouvas, S. Koussouris, V. Stankovski,
A. Symeonidis, V. Vlassiou, A. Zafeiropoulos, et al., “Current and future challenges of
software engineering for services and applications,” Procedia Computer Science, vol. 97,
pp. 34–42, 2016.

44. G. Schermann, J. Cito, and P. Leitner, “All the services large and micro: Revisiting industrial
practice in services computing,” in International Conference on Service-Oriented Computing
(ICSOC), pp. 36–47, Springer, 2015.

45. N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and L. Sa-
fina, “Microservices: yesterday, today, and tomorrow,” arXiv preprint arXiv:1606.04036,
2016.

46. M. Roberts, “Serverless architectures,” 2016. Retrieved from:
http://martinfowler.com/articles/serverless.html.

47. R. De Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, L. Baresi, B. Schmerl,
G. Tamura, R. Mirandola, T. Vogel, et al., “Software engineering for self-adaptive systems:
A second research roadmap,” in Software Engineering for Self-Adaptive Systems II, pp. 1–32,
Springer, 2013.

48. L. Bass, Software Quality Assurance In Large Scale and Complex Software-intensive Sys-
tems, vol. 1, ch. Forewords by Len Bass. Morgan Kauffmann, October 2015.

49. D. A. Tamburri, R. Kazman, and H. Fahimi, “The architect’s role in community shepherd-
ing,” IEEE Software, vol. 33, pp. 70–79, Nov 2016.

50. S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Serverless computation with openlambda,” Elastic, vol. 60, p. 80, 2016.

51. L. Baresi, M. Garriga, and A. De Renzis, “Microservices identification through interface
analysis,” in European Conference on Service-Oriented and Cloud Computing (ESOCC),
Springer, 2017. Accepted for publication.

52. L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-time feedback controller for
containerized cloud applications,” in ACM Sigsoft International Symposium on the Founda-
tions of Software Engineering (FSE), ACM, 2016. (Accepted for publication).

53. A. Cockroft, “Evolution of business logic from monoliths through microservices, to func-
tions,” 2017. Retrieved from: https://goo.gl/H6zKMn.


