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Abstract. The microservices architectural style is changing the way in
which software is perceived, conceived and designed. Thus, there is a
call for techniques and tools supporting the problem of specifying and
verifying communication behavior of microservice systems. We present
a formal semantics based on Petri nets for microservices based process
flows specified using the Conductor orchestration language: a JSON-
based domain specific language designed by Netflix, Inc. We give a formal
semantics in terms of a translation from Conductor specifications into
Time Basic Petri net models, i.e., Petri nets supporting the definition
of temporal constraints. The Petri net model can be used for computer
aided verification purposes by means of well-known techniques imple-
mented by powerful, off-the-shelf model checking tools.
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1 Introduction

One of the most successful mantras of the so called Unix’ philosophy is: “Do
one thing and do it well”. In fact, the Unix’ offspring is characterized by a
highly component-oriented architecture, with many small and specialized black-
boxes (like grep, sort, or cut) that people use everyday to assembly —often
just by using the glue provided by the shell and its piping capabilities— higher
level tasks. If Service Oriented Architectures (SOA) promise to bring black-box
components to distributed systems, the current call for a microservices attitude
aims at having small and specialized pieces of functionalities. According to some
of the proposers of the term microservices, a single application should be built
“as a suite of small services, each running in its own process and communicating
with lightweight mechanisms, often an HTTP resource API” [1, 2].

In order to establish cooperation among services, orchestration [3] has re-
cently seen a renewed interest [4]. An orchestration engine is in charge of enact-
ing a script (sometimes called the blueprint of the high level service) defining
the high level control and data flows. Thus, in order to make the composite ser-
vice predictable, it is important to develop the ability of reasoning at this higher
level. Since orchestration languages have a very simple structure and the number



of components is usually small (for example, Netflix declares their “workflows”
are made, on average, of six tasks, with the largest composed by 48 [5]), this
seems a very good opportunity to apply formal methods, whose major weakness
is often their scalability in front of real world applications complexity.

In this paper we propose to use Time Basic Petri nets [6], i.e., a partic-
ular extension of Petri nets supporting the definition of temporal constraints,
to analyze the properties of microservice-oriented applications orchestrated by
the Netflix Conductor engine [4], an open source framework designed by Net-
flix Inc. and used daily in their production environment [5]. The Conductor
‘Orchestrator’ is driven by a workflow script, written in a JSON-based domain
specific language. The Orchestrator tracks and manages workflows and it has the
ability to pause, resume and restart the microservice tasks. We defined a formal
semantics for the workflow language in which microservices are black-box de-
scribed by Petri net modules. The formal semantics is supported by a Java tool
Conductor2Pn that translates Conductor specifications into a Time Basic
Petri net model, which can be exploited for computer aided verification purposes
by means of well-known techniques implemented by powerful, off-the-shelf model
checking tools.

The paper is organized as follows: in Sect. 2 we recall some background
notions on Time Basic Petri nets, in Sect. 3 we present a running example,
in Sect. 4 we describe the semantics we defined, in Sect. 5 we apply the given
semantics to verify some properties of the running example, in Sect. 6 we discuss
some related work, and in Sect. 7 we presents our conclusions and future work.

2 Background

Time Basic Petri nets — Time Basic Petri nets (TB) nets are Petri nets
(PNs or P/T nets) [7], where system time constraints are introduced as linear
functions associated with each transition, representing possible firing instants
computed since transition’s enabling. Tokens are atomically produced by firing
transitions and they have timestamps with values ranging over R≥0. This mod-
eling formalism represents an effective formal specification of time-dependent
systems. It supports a mixed time semantics, i.e., both urgent and non-urgent
transitions can be used to define mandatory and optional events, respectively.
TB nets are also nicely supported by powerful open source software tools con-
sidering both modeling and verification aspects [8, 9]. Although other modeling
formalisms such as timed-automata [10] or finite-state-machines [11] support the
modeling of temporal or behavioral aspects, PNs-based approaches can be more
concise and scalable [12]. Furthermore, aspects such as messaging, communica-
tion protocols, which are commonly used in distributed architectures, such as
service oriented architectures and microservices, can be difficult to model with
the language primitives of automata-based formalisms [12,13].

The structure of a TB net extends the P/T net one (P, T, F ), where P is
a finite set of places, T is a finite set of transitions such that P ∩ T = ∅, and
F ⊆ (P ×T )∪ (T ×P ) is a set of arcs (or flows) connecting places to transitions

2



and transitions to places. Let v ∈ P ∪T : •v, v• denote the backward and forward
adjacent sets of v according to F , respectively, also called pre/post-sets of v. A
timestamp binding of t ∈ T is a map bt : •t → Bag(R≥0). Moreover, each
transition t is associated with a time function ft which maps a binding bt to a
(possibly empty) set of R≥0 values, denoted by ft(bt). ft is formally defined as
a pair of linear functions [lt, ut], denoting parametric interval bounds.

A marking (or state) is a mapping m : P → Bag(R≥0), where Bag(X)
represents the set of multisets over X. According to the non-urgent (or weak)
semantics, t can fire at any instant τ ∈ ft(bt). The urgent (or strong) interpre-
tation states that t must fire at an instant τ ∈ ft(bt)), unless it is disabled by
the firing of any conflicting transitions before the latest firing time of t. Given a
binding bt, a pair (bt, τ), s.t. τ ∈ ft(bt), is said a firing instance of t. The firing
instance (bt, τ) produces a new reachable marking m′ by applying the following
firing rules:

– ∀p ∈ •t \ t• m′(p) = m(p)− bt(p)
– ∀p ∈ t• \ •t m′(p) = m(p) + {τ}
– ∀p ∈ t• ∩ •t m′(p) = m(p)− bt(p) + {τ}
– for all remaining places, m′(p) = m(p)

Figure 1b shows a TB net that models the lifecycle of a single microser-
vice. We use it in the following to illustrate the background concepts. A sin-
gle token with timestamp T0 = 0 in place 〈name〉 schedule represents that
the microservice 〈name〉 has been scheduled at time 0. In this marking, the
transition 〈name〉 S2P is the only one enabled to fire by the following bind-
ing: {〈name〉 schedule → {1 · T0}, 〈name〉 ready → {1 · TA}}. Possible firing
time instants are obtained by evaluating the parametric bounds of f〈name〉 S2P:
[τe, τe + 200], where τe is the transition’s enabling time (the value 0 in this
case). Given a valid timestamp value τ ∈ [0, 200] (e.g., the value 150), accord-
ing to the firing rules, we get a new marking with a new token T0 = 150 in
place 〈name〉 inProgress (i.e., the execution of the microservice starts from
time 150). In this new marking, two transitions are concurrently enabled to fire:
the non-urgent 〈name〉 P2C in the time interval [0,∞], and the urgent 〈name〉 P2T
in the time interval [1200, 1200]. Thus, the service can either complete the ex-
ecution or enter a timeout state. In the latter case, the system retries to exe-
cute the service a fixed number of times, depending on the number of tokens
in place 〈name〉 retryCount. Whenever the task is timed out (i.e., the place
〈name〉 timeout is marked) and the retryCount limit has been reached (i.e., the
place 〈name〉 retryCount is empty), the task enters a failure state (i.e., the place
〈name〉 fail is marked by the firing of 〈name〉 P2F). The symbol ε in f〈name〉 P2F
represents an infinitesimal delay used to set a precedence between the conflicting
transitions 〈name〉 P2T and 〈name〉 P2F. Whenever a final state is entered (i.e.,
either the place 〈name〉 complete or the place 〈name〉 fail is marked), the tran-
sitions 〈name〉 C2R and 〈name〉 F2R restart the service by removing all the tokens
from 〈name〉 retryUsed and refilling 〈name〉 retryCount.

Time Reachability Graph — By using consolidated analysis techniques it
is possible to construct a finite symbolic state space of a TB net model, called
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{ "name": "payment",
"retryCount": 3,
"timeoutSeconds": 1200,
"inputKeys": [ ... ],
"outputKeys": [ ... ],
"timeoutPolicy": "RETRY",
"retryLogic": "FIXED",
"retryDelaySeconds": 600,
"scheduleSeconds": 200

}

(a) Worker task JSON object.

<name>_schedule

<name>_S2P
<name>_inProgress

<name>_P2C

<name>_complete

<name>_P2T

<name>_timeout
<name>_retryCount

<name>_T2P

<name>_ready

<name>_fail

<name>_P2F

<name>_retryUsed<name>_F2R

<name>_C2R

(b) Translation pattern.

Initial marking: 〈name〉 ready{TA}, 〈name〉 retryCount{〈retryCount〉 · TA}
Transition Time function
〈name〉 S2P [τe, τe+〈scheduleSeconds〉]
〈name〉 P2C [τe, τe +∞]
〈name〉 P2T [τe+〈timeoutSeconds〉, τe+〈timeoutSeconds〉]
〈name〉 P2F [τe+〈timeoutSeconds〉+ ε, τe+〈timeoutSeconds〉+ ε]
〈name〉 T2P [τe+〈retryDelaySeconds〉, τe+〈retryDelaySeconds〉]
〈name〉 F2R/ C2R [τe, τe]

Fig. 1: Translation pattern of a RETRY timeout-policy worker with FIXED retry-
logic. Non-urgent transitions are depicted in gray.

its Time Reachability Graph (TRG) [8]. The TRG construction is automated
by the Graphgen software tool [8, 9, 14]. It basically relies on a symbolic state
notion: each reachable state is a pair: S = (M,C), where M (symbolic marking)
maps places into elements of Bag(TS) (i.e., multisets of timestamps) and C
(constraint) is a logical predicate formed by linear inequalities defined in terms
of TS∪{TL, TA}, where the symbol TL represents the state creation instant, and
the symbol TA represents an anonymous timestamp (i.e., a timestamp whose
time value does not influence the evolution of the system). The constraint C
contains relative time dependencies between timestamps. An example of initial
symbolic state for the model in Figure 1b can be S0 = (M0, C0), such that:

M0 := 〈name〉 schedule{T0}, 〈name〉 retryCount{3 · TA}
C0 := T0 ≥ 0 ∧ T0 ≤ 10 ∧ TL = T0.

Since TA symbols are unessential for the computation of firing times associated
with enabled transitions, they do not appear in the symbolic constraint C0.

Given the TRG structure, model checking algorithms can be applied to verify
the correctness of the system against requirements expressed as specific Time
Computation Tree Logic (TCTL) properties [15, 16]. The model checking tech-
nique is fully automated by the Graphgen software tool.

3 A Running Example: the Taxi-hailing Application

To illustrate the use of Conductor2Pn, we consider a taxi-hailing application
example, such as Uber [17]. This application has a modular architecture: at the
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Fig. 2: High level schema of the taxi-hailing orchestration.

core is its business logic, which is implemented by modules that define domain
objects and events. Surrounding the core are adapters (e.g., database access
components, messaging components, etc.) that interact with the external world,
and web components that either expose APIs or implement a user interface (UI).
Many organizations in this context are re-engineering their monolithic applica-
tions to adopt microservice architectures. The idea is to split the application into
a set of smaller cohesive, independent process services interacting via messages.

A possible decomposition of the taxi-hailing system is shown in Figure 2.
This schema follows the notation introduced in [4] and shows all the services and
the overall workflow. It can be automatically generated from the Conductor
blueprint (by using the Conductor framework).

Each microservice (i.e., a rectangular shape in Figure 2) implements a (mi-
cro) functionality (e.g., access control, trip management, payment, etc.) and is
deployed independently, possibly into cloud virtual machines or Docker contain-
ers [18]. Moreover it exposes a REST API consumed by other microservices or
by the application’s clients. For instance, the Passenger management uses the
Notification service to notify a passenger about an available driver. The API
gateway instead, exposes a public API used by mobile clients or web UIs.

Other shapes represent control and data flow primitives (e.g, EVENT, FORK,
JOIN, etc.) executed within the Conductor orchestration server to manage the
execution and scalability of the entire process flow. For instance, req. type deci-
sion allows to choose between alternative flows depending on the request type.
The Passenger and the Driver components use the dynamic fork primitive to
dispatch user requests to different (possibly replicated) services, geographically
located in different areas. A complete list of all available workflow primitives of
Conductor is available in Table 2. They will be described more in depth in
section 4.2.

It is worth noting that this example is intended to represent a fictional but
significative microservice system. We have designed it to highlight several fea-
tures supported by our formal framework.

4 Time Basic Net Semantics for Conductor

This section introduces the semantics we defined for microservice process flows.
The semantics is defined by giving the translation from the Conductor blueprint
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into a TB net formal model. We provide a translation for each construct of
the Conductor language, i.e., a JSON-based domain specific language that
describes both the involved microservices (Worker tasks) and the execution
flow (System tasks). The model generation process is guided by the identifi-
cation of translation patterns of each individual component. Each pattern has
input/output elements for joining it with other patterns. The final model is the
composition (i.e., the union by joining input/output elements) of different TB
net patterns of the corresponding microservices and execution flow constructs.
The translation process is fully automated by the Conductor2Pn1 Java soft-
ware tool.

4.1 Worker tasks

Worker tasks represent the individual microservices. Worker tasks can be imple-
mented in any language and talk to the Conductor via REST API endpoints
to poll for other tasks and update their status after execution. Our modeling ap-
proach abstracts away from implementation details and it views a single worker
as a black-box component. We use TB net places to represent the state of a task
and TB net transitions to represent the task primitives. Moreover, we make use
of temporal functions associated with transitions to specify temporal constraints
upon scheduling and execution.

Figure 1a represents an example of worker task metadata definition using the
Conductor domain specific language. This example contains a JSON object
which lists a number of fields used to tell the Conductor engine how to manage
the microservice lifecycle. Accordingly, we apply the corresponding translation
pattern (Figure 1b). In this example, a timeout (i.e., the timeoutSeconds prop-
erty) has been set. Thus, if the payment task does not complete within 1200 mil-
liseconds, Conductor retries the task again (i.e., the RETRY timeoutPolicy)
up to 3 times (i.e., the retryCount property). Upon timeout, the task is resched-
uled after a fixed delay (i.e., the FIXED retryLogic) of 600 milliseconds (i.e.,
retryDelaySeconds property). The tasks need up to 200 milliseconds to be
scheduled (i.e., scheduleSeconds property).

Figure 1b depicts the translation pattern of the worker task listed in Fig-
ure 1a. The pattern can be instantiated by replacing each 〈field〉 with the
corresponding value read from the JSON object. Dashed line shapes represent
the input elements. Therefore, the payment task is being executed whenever the
payment schedule place become marked. Double line shapes represent output
elements. In this example, the payment complete is the element used to join the
payment task to other subsequent patterns.

Table 1 contains the complete description of metadata associated with worker
tasks. Fields marked as user defined assumption are not part of the Conductor
language, but represent additional information used by our translation process
to define the user assumption on time required by specific lifecycle operations.

1 Conductor2Pn has been released as open-source software. It is available for down-
load at: https://bitbucket.org/seresearch_unimi/conductor2pn.
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Table 1: Metadata associated with worker tasks.

field description notes

name worker task name. Unique.

retryCount
#retries to attempt when a task is
marked as timed out.

-

timeoutSeconds
Timeout (msec.) to complete a task
after transiting to inProgress status.

No timeouts if set to 0.

timeoutPolicy Task’s timeout policy.
Possible values:
RETRY, ALERT ONLY, TIME OUT WF.

retryLogic Mechanism for the retries.
Possible values:
FIXED, EXPONENTIAL BACKOFF.

scheduleSeconds
Time (msec.) needed to schedule
a task.

User defined assumption.

terminateSeconds
Time (msec.) needed to end
a task upon termination request.

User defined assumption.

If not defined (e.g., no prior information is available, or they have negligible
values), a default value is supplied. Different combinations of values assigned to
timeoutPolicy and retryLogic fields determine different semantics and differ-
ent corresponding translation patterns, as follows.

– The RETRY timeoutPolicy along with FIXED retryLogic is described
above and the corresponding translation pattern is shown in Figure 1b.

– The ALERT ONLY timeoutPolicy means that the worker task just registers
a counter upon timeout. The translation pattern can be easily obtained starting
from Figure 1b and by erasing the places: 〈name〉 retryCount, 〈name〉 timeout,
〈name〉 retryUsed, and the transitions: 〈name〉 T2P, 〈name〉 F2R, and 〈name〉 C2R,
(along with incoming/outgoing edges). Meaning that the task does not retry the
execution, but it goes into a failure state after the first timeout.

– The TIME OUT WF timeoutPolicy means that the entire workflow is marked
as timed out and terminated upon worker’s timeout. This translation pattern is
shown in Figure 3a. The dashed box represents a foreach macro substitution
and it means that the inner elements are repeated for each element e (i.e., for
each 〈name〉 ready, 〈name〉 inProgress and 〈name〉 inProgress places, in this
specific pattern).

– The RETRY timeoutPolicy along with EXPONENTIAL BACKOFF retryLogic

means that upon timeout, the task is rescheduled after retryDelaySeconds mul-
tiplied by the attempt number. This translation pattern is shown in Figure 3b.
Likewise the RETRY-FIXED pattern (Figure 1b), the generated model retries to
execute a timed out task a fixed number of times, but with a different timeout
foreach retry attempt. The for macro substitution is used here to replicate the
inner elements so that each retry attempt is constructed with the correct tem-
poral constraint. The place 〈name〉 retryUsed along with transitions 〈name〉 C2R
and 〈name〉 F2R are used to implement the same mechanism used in RETRY-FIXED
tasks to refill the 〈name〉 retryCount place, once a termination state is reached.

The TB net models of the individual microservices’ lifecycle represent the
basic components that are joined together with the system task models.
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<name>_schedule

<name>_S2P

<name>_inProgress

<name>_P2C

<name>_complete

<name>_P2T

<name>_timeout

<name>_T2T

foreach e ∈ {<name>_ready ⋁ 
  <name>_inProgress ⋁ <name>_timeout}

e
terminate_<e> termination

<name>_ready

Initial marking: 〈name〉 ready{TA}
Transition Time function
〈name〉 T2T [τe, τe+〈terminateSeconds〉]
tarminate 〈e〉 [τe, τe]
other See Figure 1.

(a) TIME OUT WF pattern.

<name>_schedule

<name>_S2P

<name>_inProgress

<name>_P2C

<name>_complete

<name>_P2T
<name>_timeout

<name>_retry_<i>

<name>_T2P_<i>

<name>_retry_<i+1>

<name>_T2P_<i+1>

for i ∈ {1…<retryCount-1>}

<name>_ready

<name>_retryCount

<name>_P2F

<name>_fail

<name>_retryUsed
<name>_F2R

<name>_C2R

Initial marking: 〈name〉 ready{TA},
〈name〉 retryCount{〈retryCount〉 · TA},
〈name〉 retry 1{TA}

Transition Time function
〈name〉 T2P 〈i〉 [τe + 〈retryDelaySeconds〉 · 〈i〉,

τe + 〈retryDelaySeconds〉 · 〈i〉]
other See Figure 1.

(b) EXPONENTIAL BACKOFF pattern.

Fig. 3: Translations of a TIME OUT WF, and a RETRY EXPONENTIAL BACKOFF worker
tasks, respectively. Non-urgent transitions are depicted in gray.

4.2 System tasks

The overall process flow in Conductor is a sequence of worker tasks (denoted,
in the Conductor language, by the SIMPLE value associated with the type

field) and system tasks (Table 2 lists all possible system task types). System
tasks represent the execution flow primitives and their execution/scalability is
managed by the Conductor engine. Our translation process defines a formal
semantics for all system tasks, however, for the sake of space, we describe in the
following the translation pattern of some representative examples used in our
taxi-hailing application.

Event Task — This system task publishes an event (i.e., a message) to either
Conductor or an external system. Messages to Conductor can create event
based dependencies for workflows and tasks by using event handlers. Handlers
execute specific actions (i.e., either start a workflow, fail a task, or complete
a task) when a matching event occurs. In our taxi-hailing application example
we make use of an event handler to start the workflow upon a request event.
Moreover, an event task (i.e., notification) is used whenever a core functionality
must notify a user. Figure 4a lists an example of an event task defined by using
the Conductor language. It requires the following configuration parameters:
the inputParameters is a map where keys are parameters’ reference name and
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Table 2: Description of all available system tasks.

type name purpose

DYNAMIC
A worker task which is dynamically derived based on the input to the task,
rather than being statically defined.

DECISION Similar to the switch case statement in a programming language.
FORK Fork is used to schedule a parallel set of tasks.

FORK JOIN DYNAMIC
Same as fork, except that the list of tasks to be forked is provided
at runtime using task’s input. A JOIN task must follow the dynamic fork.

JOIN
Join task is used to wait for completion of multiple tasks spawned by a
(dynamic) fork tasks.

SUB WORKFLOW Sub Workflow task allows for nesting a workflow within another workflow.

WAIT
A wait task is implemented as a gate that remains in inProgress state
unless marked as completed or failed by an external trigger.

HTTP An HTTP task is used to make calls to another microservice over HTTP.

EVENT
Publish an event (message) to either Conductor or an external system.
They are useful for creating event based dependencies for workflows and tasks.

{ "name": "notification",
"inputParameters": {
"dst": "${input.dst}",
"msg": "${input.msg}"

},
"type": "EVENT",
"sink": "sqs:messageQueue"
"eventSeconds": "800"

}

(a) Event task JSON object.

<name>_event

foreach p ∈ previousTask.output

p

foreach t ∈ previousTask.output

t
<t>_T2E

foreach p ∈ nextTask.input

foreach t ∈ nextTask.input

p

t
<name>_E2T

<name>_message

(b) Translation pattern.

Initial marking: ∅
Transition Time function
〈key〉 decision [τe, τe+〈eventSeconds〉]

Fig. 4: Translation pattern of an EVENT system task.

values are inputs parameters of the event tasks; the sink represent the recipient
of the event which can be either Conductor or an external system like Ama-
zon Simple Queue Service (SQS) [19] used in our example; the eventSeconds

defines an additional assumption on the time required by the event generation
process (i.e., 800 milliseconds in our example). Figure 4b shows the correspond-
ing translation pattern. It connects all output elements of the previous task (i.e.,
previousTask.output) to the 〈name〉 event transition that produces the event
(i.e., a new token into the 〈name〉 message). The postset of this transition also
includes of all the input elements of the subsequent task (i.e., nextTask.input).
Tokens in the 〈name〉 message place can be consumed by the different event
handlers, if any.

Decision task — A decision task represents a switch-case like statement. In
our taxi-hailing application, it is used to decide over alternative process flows,
depending on the user type of an incoming request. An example is shown in
Figure 5a. The caseValueParam is the name of the parameter in task input
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{ "name": "functionalArea",
"type": "DECISION",
"inputParameters": {

"value": "${req.Type}"
},
"caseValueParam": "value",
"decisionCases": {

"Driver": [ ... ],
"Passenger": [ ... ],
"Trip": [ ... ]

},
"decisionSeconds": "600"

}

(a) Decision task JSON object.

<key>_case

foreach key,value ∈ <decisionCases>

foreach p ∈ previousTask.output

p

foreach t ∈ previousTask.output

t
<t>_to_<key>

foreach p ∈ value[0].input

foreach t ∈ value[0].input

p

t
<key>_to_<t>

(b) Translation pattern.

Initial marking: ∅
Transition Time function
〈key〉 decision [τe, τe+〈decisionSeconds〉]

Fig. 5: Translation pattern of a DECISION system task.

whose value will be used as a switch; the decisionCases is a map where keys
are possible values for caseValueParam and values are lists of tasks to be exe-
cuted; the decisionSeconds defines an additional assumption on time required
by the decision process. Figure 5b shows the translation pattern of a decision
task. Since the decisionCases in Figure 5a has three key-value pairs, by apply-
ing the external macro substitution we obtain three transitions: Driver case,
Passenger case, and Trip case which represent a non-deterministic choice be-
tween three different alternative execution flows. The output elements of the
previous task in the process flow (i.e., previousTask.output) represent the pre-
set of these transitions, while the input elements of the first task in the value
list (i.e., value[0].input) represent their postset.

Dynamic Fork Join task — Dynamic fork join tasks are used in our taxi-
hailing application to dispatch requests to the appropriate services, depending
on the geographical location of the user. The request may be dispatched to
multiple replicated services to increase the resilience. Figure 6a shows an ex-
ample which defines two system tasks: the dynamic fork and the join (that
must always follow the former one). The dynamicForkTasksParam is the name
of the parameter in task input whose value contains the list of tasks to be
executed in parallel. The inputParamName is a map where keys are forked
task’s reference name and values are inputs parameters of forked tasks. The
dynamicForkTasks represents an additional user defined assumption used to
identify at design time the set of tasks that can be launched during the exe-
cution of the dynamic fork. The example in Figure 6a shows that Passenger

task can spawn any combination of worker tasks chosen from the following mul-
tiset: {3 · PassengerManagement}, i.e., the taxi-hailing application can dispatch
the request to up to three PassengerManagement tasks to deal with the user
requests. If the dynamicForkTasks is not defined, the default assumption is
{1 · task} for each task in the worker tasks set. The dynamicForkSeconds and
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{ "name": "Passenger",
"type": "FORK_JOIN_DYNAMIC",
"dynamicForkTasksParam":
"dynamicTasks",
"inputParamName":
"input",
"dynamicForkTasks": [

"3*PassengerManagement"
]

"dynamicForkSeconds": 250
},
{ "name": "coordinator",
"type": "JOIN"
"joinSeconds": 250

}

(a) A dynamic fork followed by
a join task JSON objects.

<name>_fork

for i=1…n s.t. taski ∈ <dynamicForkTasks>foreach p ∈ 
  previousTask.output

p

foreach t ∈ 
  previousTask.output

t

<t>_2DF

foreach p ∈ 
  <taski>.input

foreach t ∈ 
  <taski>.input

p

t
<key>_to_<t>

<taski>_fork

<task0>_choice

foreach p ∈ 
  <taski>.output

p

foreach t ∈
  <taski>.output

t

<task>_2J
<name>_join

<taski>_skip

<taski+1>_choice

<taskn+1>_choice

(b) Translation pattern.

Initial marking: ∅
Transition Time function
〈name〉 fork [τe, τe+〈dynamicForkSeconds〉]
〈name〉 join [τe, τe+〈joinSeconds〉]
〈taski〉 fork/ skip [τe, τe]

Fig. 6: Translation pattern of a FORK JOIN DYNAMIC system task. Non-urgent
transitions are depicted in gray.

the joinSeconds define additional assumption on time required by the dynamic
fork and join processes, respectively.

Figure 6b shows the translation pattern of a dynamic fork task followed by
a join task. The initial component generated by the translation process is the
Passenger fork transition. The preset of this transition is composed of all the
output components of the previous task. The external for macro substitution
(on the right side), allows the 〈taski〉 fork/ join components to be replicated
for each taski in the dynamicForkTasks multiset. Thus, whenever the place
taski choice is marked, the taski can either be executed or not, depending
on the non deterministic choice of fire either 〈taski〉 fork or 〈taski〉 skip.
Whenever all the forked tasks complete their execution, the Passenger join

transition becomes enable to fire (i.e., the output component of the translation
pattern).

The final model, automatically derived from the translation process of Con-
ductor2Pn, formally defines the entire execution flow and can be used to per-
form different verification activities, such as simulation and model checking.

5 Formal Verification

Based on the TB net modeling formalism described in the previous sections, we
are able to formally verify the requirements by essentially inspecting the TRG
structure. In this Section, we describe some verifiable properties, by means of
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some significative examples upon the taxi-hailing application. The properties can
be verified by using the Conductor2pn output directly fed into Graphgen.

A very common property to check is deadlock/livelock freedom. If the prop-
erty does not hold, all the paths leading to a deadlock state can be easily visual-
ized. Livelock freedom has been proven on the taxi-hailing process flow. However,
there exist potentially unwanted execution paths leading into deadlock states.
For instance, since the access control microservice is not replicated, it represents
a single point of failure. When, for some reason, it would not be reachable, the
incoming requests would be partially handled and the process flow would not
reach a final state. This scenario is represented by a feasible execution path,
where the non-urgent transition accessControl P2C never fires.

More generally, it is possible to formalize the requirements by using specific
CTL/TCTL formulas [20, 21], in order to verify invariant, safety, liveness and
bounded-response time properties [8, 16]. An example of a safety property is:

¬EF (payment inProgress > 0 ∧ payment timeout > 0) (1)

Formula (1) means that does not (¬ operator) exists (E operator) a feasible
path, where the argument eventually (F operator) holds. The argument is a
state formula expressed as combination of conditions on the number of tokens
in places: i.e., an inconsistent state of the payment component, where both
inProgress and timeout status coexist, a condition that we want to be sure it
will never happen. An example of a liveness property is:

AG(accessControl complete > 0 ∧ cache complete > 0 =⇒
AF (Passenger schedule > 0 ∨ Driver schedule > 0 ∨ TripManagement schedule > 0)) (2)

Formula (2) is used to verify that for all paths (A), globally (G), if a request
has been handled, then a decision between Driver, Passenger and Trip man-
agement tasks is always (A), eventually (F ) taken.

Bounded-response time properties can be used to perform timing analysis on
the process flow. A simple example of this property is presented in Formula 3:

AG(payment schedule > 0 =⇒ EF≤2400(billing complete > 0)) (3)

This formula is used to verify that whenever a payment task is requested, it is
possible to complete the billing process (without failures), within 2.4 seconds.
Another example follows below:

AG(APIGateway forking > 0 ∧ notification message = 0 =⇒
EF≤4800(notification message > 0)) (4)

Formula 4 is used to verify that whenever a user request is received, a final state
(i.e., a notification message has been enqueued), is reachable in 4.8 seconds.

6 Related Work

Orchestration [3] and choreography [22] are two well-established alternative ap-
proaches to define cooperation between services in order to provide arbitrary
complex interactions and functionalities. Although, orchestration was more pop-
ular in SOA, this approach has recently seen a renewed interest due to its
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simplicity of use and easier ways to manage complexity. Moreover, peer task
choreography, can lead to harder scalability with growing business needs [4].
The approach presented in this paper has been mainly influenced by different
related lines of work aiming at reuse theoretical results from well-established
models and techniques in formal methods. Recent proposed techniques try to
connect choreographies and behavioral types to either logic-based formalisms,
such as µ-calculus [23], linear logic [24], or automata-based formalisms, such as
abstract machines and communicating automata [25]. Our translation approach
is somehow inspired by previous studies that propose to map Business Process
Execution Language (BPEL) for Web Services [26–28] to PNs. These techniques
provide computer aided verification for SOA systems. However, these approaches
are not directly applicable in the context of microservices, where new emerging
languages and frameworks, such as Jolie [29] and Conductor [4], are being
adopted as major references for orchestration, from both industry and academia.

Our work represents the first attempt (to the best of our knowledge) to lever-
age the expressiveness of the TB nets to supply formal specification and verifi-
cation of microservice based process flows defined via Conductor blueprints.
TB nets also allows to easily map and analyze temporal aspects that can be of
primary importance in different application contexts, at least to ensure a certain
quality of service. The formalization process opens up the possibility to directly
apply model checking, simulation, model-based testing, and runtime verification
by means of powerful off-the-shelf tools, such as Graphgen [8, 14], MaRDi-
GraS [30] and MahaRAJA [31].

7 Conclusion and Future Work

In this paper we propose a formal semantics for process flows specified using
Conductor, i.e., an open source orchestration framework in use at Netflix,
Inc. Our approach aims at mechanically producing a formal representation in
terms of Time Basic Petri Nets. The translation process is fully automated by
means of a Java software tool called Conductor2Pn. The formal semantics
is complete (i.e., it covers all the language constructs of Conductor). The
TB net model can be used to perform model checking, simulation, model-based
testing, and runtime verification by means of powerful off-the-shelf tools. We
demonstrated the use of the tool on a small taxi hailing system, illustrating
how to analyze the behavior of a Conductor blueprint by model-checking its
translation.

We are interested in expanding on this work in different directions. Con-
ductor2Pn is currently a prototypal implementation and has been tested on
a variety of small benchmarking examples. We are going to test it with more
sophisticated real-world applications in order to evaluate the scalability of the
proposed approach. Moreover, we want to expand the translation to stochas-
tic formalisms to support both performance analysis and probabilistic model
checking in presence of uncertainty. A suitable modeling formalism that nicely
supports these features is Generalized Stochastic Petri Nets [32].
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