
Intercepting Blackhole Attacks in MANETs:
An ASM-based Model

Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio

Department of Informatics, University of Bari, Via Orabona 4, 70125 Bari, Italy
{alessandro.bianchi, sebastiano.pizzutilo,

gennaro.vessio}@uniba.it

Abstract. The inherent features of Mobile Ad-hoc NETworks (MANETs) make
them vulnerable to various kinds of security attacks. In particular, in a so-called
blackhole attack, one or more malicious hosts can send fake routing information
towards an initiator, compromising the reliability of the network in the whole. In
this paper, we propose a refinement of the NACK-based Ad-hoc On-demand
Distance Vector (N-AODV) protocol, namely Blackhole-free N-AODV (BN-
AODV), as a solution to intercept (cooperative) blackhole attacks in MANETs.
Thanks to a formalization through an Abstract State Machine-based model, the
correctness of the proposed protocol is formally proved.

Keywords: Abstract State Machines, Mobile Ad-hoc NETworks, Blackhole

1 Introduction

Mobile Ad-hoc NETworks (MANETs for short) are collections of nomadic hosts which
communicate in a wireless way without the need of any fixed physical infrastructure
[1]. The lack of infrastructure and the continuous topology change due to movement
require the definition of specific routing protocols: in most cases a communication
session between two hosts is set and maintained by a number of hosts lying in the path
between the two communicants. All routing protocols for MANETs, in their basic
definition, assume the trustworthiness of each host. However, because of its inherent
features, in the presence of malicious hosts the reliability of a MANET is vulnerable to
various kinds of attacks: flooding, wormhole, blackhole, and so on [2].

In a blackhole attack the malicious host sends fake routing information towards an
initiator, claiming to know the best route to reach destination [3]. Packets are so routed
towards the malicious host allowing it to misuse or discard them. Sometimes, the attack
involves several malicious hosts that work cooperatively. Blackholes negatively impact
the performance of a MANET, making worse the inherent problem of packet loss, due
to mobility, for which there is no guarantee, in general, that a destination is reachable.
Unfortunately, since it takes advantage of the characteristics of the protocols’
mechanism, such an attack is easy to be carried out and intercepting it is difficult.

The literature proposes several solutions to intercept blackhole attacks, both single
and cooperative ([2], [3] and [4] are surveys on this topic). Nevertheless, all these

2 Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio

solutions are described in a conventional (often informal) way, which is not rich enough
to enable rigorous analysis about the capability of the protocol to intercept such attacks.
Conversely, the availability of a high-level, formal environment could provide a way
to analyze solutions to blackhole attacks rigorously.

To this end, the present paper proposes Blackhole-free NACK-based Ad-hoc On-
demand Distance Vector (BN-AODV), a variant of the recently proposed NACK-based
Ad-hoc On-demand Distance Vector (N-AODV) routing protocol [5], [6]. BN-AODV
is here formally specified using Abstract State Machines (ASMs) [7], and its ability to
intercept blackhole attacks is proved. In the following, several reasons for choosing the
ASM formalism are presented. Firstly, it represents a general model of computation
which subsumes all other classic computational models [8]. Secondly, it provides a way
to describe algorithmic issues in a simple abstract pseudo-code, which can be translated
into a high level programming language source code in a quite simple manner [9].
Moreover, considering methodological issues, it has been successfully applied for the
design and analysis of critical and complex systems in several domains, and a specific
development method came to prominence in the last years [7]. Finally, considering the
implementation point of view, the capability of translating formal specifications into
executable code, in order to conduct simulations of the models, is provided by tools
like AsmL [10] (which is not maintained anymore), CoreASM [11] and ASMETA [12].

The rest of this paper is organized as follows. Section 2 summarizes the related
literature. Section 3 overviews both ASM and N-AODV. Section 4 informally
introduces BN-AODV, that is formally modeled in Section 5. Section 6 proves the
correctness of the protocol. Section 7 concludes the paper and sketches future research.

2 Related work

Traditionally, the literature discusses MANET protocols simulating the network
behavior (e.g., [13], [14]). The simulation-based approach is very effective from the
execution viewpoint, mainly for evaluating performance and comparing different
solutions. However, it takes into account only a limited, predictable range of scenarios
and it is not able to formally prove properties of interest. Conversely, formal methods
are useful for reasoning about MANET behavior and provide more reliable results. In
literature, some process calculi specifically tailored for MANETs have been proposed,
for example: the ω-calculus [15], CMN (Calculus of Mobile Ad Hoc Networks) [16],
and AWN (Algebra for Wireless Networks) [17]. They capture essential characteristics
of nodes: from their mobility to the packet broadcasting and unicasting. However, they
are not directly executable, so, conducting simulations is not possible. Moreover,
process calculi are typically based on mathematical notions that developers could find
unfamiliar. Various general purpose state-based models have also been used in the
MANET domain, for example, finite state machines [18] and Petri nets [19], [20]. In
particular, Petri nets have been employed to study several issues: modeling and
verification of routing protocols [21], [22]; evaluation of their performance [23];
application to vehicular networks [24]. With respect to process calculi, state-based
models provide a comfortable way for representing algorithmic issues, especially from

Intercepting Blackhole Attacks in MANETs: An ASM-based Model 3

the graphical point of view. Moreover, they are typically equipped with tools, such as
CPN Tools [25], that allow one to execute the models. Nevertheless, state-based models
lack of expressiveness: basically, they provide only a single level of abstraction and
cannot support refinements to executable code. Moreover, according to [26], when
compared to ASMs in modelling a variety of distributed systems, PNs are considered
“neither intuitively clear nor formally simple”. In order to overcome these limitations,
our research makes use of Abstract State Machines (ASMs) [7].

The capability of ASMs to subsume other classic computational models has been
stated in several works, e.g. [8], [27], [28], and an ASM sequential thesis has been
proved in [29]. It states that ASMs suffice to capture the behavior of wide classes of
sequential systems at any desired level of abstraction. This thesis has then been
extended to parallel [30] and concurrent [31], [32] computations.

For what specifically concerns blackhole attacks, the literature includes several
proposals, surveyed in [2], [3], but for the purposes of this work we only consider the
solutions based on the AODV protocol and its variants. We can classify these solutions
into two main categories, according to the approach they implement: topology-based
and table-based. Solutions in the first category take into account the neighbourhood of
the nodes in the MANET [33], or the existence of more than one route between a source
and a destination [34], [35]. The second category ([36], [37], [38]) includes solutions
in which nodes store information about all received packets in a new table. Except of
[37], and [38], all these proposals are useless in case of cooperative blackhole. Instead,
the solution we propose is able to identify both single and cooperative attacks.

3 Background

In the following, the main concepts concerning Abstract State Machines and NACK-
based Ad-hoc On-demand Distance Vector routing protocol for Mobile Ad-hoc
NETworks are summarized. Detailed descriptions can be found in the related literature.

3.1 Abstract State Machines

Informally speaking, Abstract State Machines are finite sets of so-called rules of the
form if condition then updates which transform the abstract states of the machine [29].
The concept of abstract state extends the usual notion of state occurring in finite state
machines: it is an arbitrary complex structure, i.e. a domain of objects with functions
and relations defined on them. On the other hand, a rule reflects the notion of transition
occurring in traditional transition systems: condition is a first-order formula whose
interpretation can be true or false; while updates is a finite set of assignments of the
form f(t1, …, tn) := t, whose execution consists in changing in parallel the value of the
specified functions to the indicated value.

According to [7], pairs of function names together with values for their arguments
are called locations: they abstract the notion of memory unit. The current configuration
of locations together with their values determines the current state of the ASM. In each
state, all conditions are checked, so that all updates in rules whose conditions evaluate

4 Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio

to true are simultaneously executed, and the result is a transition of the machine from
one state to another, i.e. from a configuration of values in locations to another.
Moreover, for the unambiguous determination of the next state, updates must be
consistent, i.e. no pair of updates must refer to the same location. The formalism also
supports the mechanism of procedure calls; this is achieved by the definition of ASM
submachines, i.e. parameterized rules. They support the declaration of local functions,
so that each call of a submachine works with its own instantiation of its local functions
in addition to the functions of the supermachine calling it.

Distributed ASMs (DASMs) [7] represent a generalization of basic ASMs: they
capture the formalization of multiple agents acting in a distributed environment.
Essentially, a DASM is intended as an arbitrary but finite number of independent agents
(which are elements of a set Agents), each executing its own underlying ASM. In a
DASM the keyword self is used for supporting the relation between local and global
states and for denoting the specific agent which is executing a rule.

In order to properly manage the complexity of the modeled systems, the ASM
formalism includes several constructs [7]. For our purposes, we consider: the let rule,
in the form let x = t in P, aimed at assigning the value of t to x, and then executing the
rule P; the forall rule (forall x with φ do P), which executes P in parallel for each x
satisfying φ; the choose rule (choose x with φ do P), which chooses an x satisfying φ,
and then executes P; the seq rule (P seq Q) which sequentially executes P and then Q.

3.2 NACK-based Ad-hoc On-demand Distance Vector Routing Protocol

The interception mechanism of blackhole attacks here proposed is derived from
NACK-based Ad-hoc On-demand Distance Vector (N-AODV) [5]: it is a variant of the
popular Ad-hoc On-demand Distance Vector (AODV) [39]. Its aim is to improve the
network topology awareness of the network nodes through the adoption of a specific
control packet named NACK (Not ACKnowledgement) [6]. N-AODV is a reactive
protocol in which routes are discovered on-demand, and stored into routing tables
within each node. The routing table associated with each node lists all the discovered
(still valid) routes towards other nodes in the network and information on them. In
particular, an entry of the routing table of the host i concerning a node j includes: the
address of j; the last known sequence number of j; the hop count field expressing the
distance between i and j; and the next hop field identifying the next node in the route to
reach j. The sequence number is a monotonically increasing value maintained by each
node: it helps other nodes to express the freshness of the information about it.

When an initiator wants to start a communication, it first checks if the destination is
in its neighborhood (so that it is directly reachable), or a route to it is currently stored
in its routing table. If so, the protocol ends and the communication simply starts.
Otherwise, initiator fires the route discovery mechanism, by broadcasting route request
(RREQ) packets to all its neighbors. Among the others, an RREQ packet includes:
initiator address and broadcast id; destination address; destination sequence number,
which expresses the latest available information about destination; and hop count,
initially set to 0, and increased by each intermediate node. Note that the pair initiator

Intercepting Blackhole Attacks in MANETs: An ASM-based Model 5

address and broadcast id uniquely identifies the packet; in this way, duplications of
RREQs that nodes have handled before can be ignored.

When an intermediate node n receives an RREQ, it updates the routing table entry
for initiator, concerning both the sequence number of initiator and its next hop field; if
an entry for initiator does not exist, it is created. Then the process is reiterated: n checks
if the destination is a neighbor, or if it knows a route to destination with corresponding
sequence number greater than or equal to the one contained into the RREQ (this means
that its knowledge about the route is more recent). In both cases, n unicasts a route reply
(RREP) packet back to initiator; an RREP contains: initiator and destination address;
destination sequence number and hop count. Otherwise, n: updates the hop count field;
rebroadcasts the RREQ to all its neighbors; and unicasts a NACK packet back to
initiator. The NACK is so used to inform all nodes between n and initiator that, roughly
speaking, n “does not know anything” about destination. Each NACK packet includes
the addresses and the sequence numbers of n and initiator and their distance.

The route discovery successfully ends when a route to destination is found. While
the RREP travels towards initiator, routes are set up inside the routing tables of the
traversed hosts by creating an entry for destination when needed. Once initiator receives
the RREP, the communication session can start. Conversely, the route discovery fails
when: no RREQ reaches a node which is in the destination neighborhood; or no RREQ
reaches a node whose routing table contains a route to destination; or a previously set
timeout expires while initiator is waiting for RREPs. The first two cases depend on the
non-reachability of destination; instead, the last case can be due to either the isolation
of the destination, or too long distances, or changes in the topology during the packet
transmission.

4 Blackhole-free N-AODV

The solution here proposed for intercepting blackholes relies on N-AODV, and it
adopts two additional control packets, namely Challenge (CHL) and Response (RES)
packets, aimed at ensuring that no blackhole is in the discovered route. To this end,
asymmetric cryptography is followed: every node j is associated with a public key
(denoted by Kj) and a private key (denoted by Kj

-1). Data packets exchanged during
communication sessions, as well as CHL and RES packets, that are to be routed to a
node j, must then be encrypted with Kj, and only j can decrypt them by using the
corresponding Kj

-1. Conversely, RREQ and RREP packets are not encrypted. The
public keys are spread over the network by the RREQ and NACK packets. More
precisely, both RREP and NACK are enriched with a field storing the public key of the
host producing the packet. In this way, each node receiving these packets knows the
public key associated with the issuer; in other words: when a node i learns about the
identity of a node j, then i also learns Kj.

The main idea behind BN-AODV is that every intermediate node lying in the
discovered route to reach destination is responsible of the trustworthiness of the next
hop of such route. To this end, if a node n receives an RREP directed to initiator from
one of its neighbours m, then n must check the trustworthiness of the received RREP.

6 Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio

This is accomplished by sending a CHL packet to destination d, through m, encrypted
with Kd, The CHL can simply consist of a nonce to be decremented by d. If the CHL
safely reaches d, then d must reply with a RES packet, encrypted with Kn, to be
unicasted towards n. If n receives back the proper RES, then it considers the RREP to
be trusted and forwards the packet to the next hop in the reverse route to reach initiator.
The process is then reiterated by every intermediate node in the route, until the RREP
reaches initiator, which checks the trustworthiness of the RREP for the last time. If the
last RES is received, the communication session can start. Conversely, if an
intermediate node n, waiting for a RES, does not receive back the expected packet, it
suspects the next hop m, in the route to reach d, to be a blackhole. As a consequence, n
stops forwarding the RREP. If destination is not safely reachable and no alternative
secure route is discovered until the timeout expiration, the route discovery fails.

In the case of cooperative attack, it is worth noting that one or more colluders could
confirm the trustworthiness of the fake RREP. Nevertheless, the approach here
proposed is able to intercept such an attack thanks to the last control executed by
initiator. In fact, in this way, the protocol is able to judge secure or not the entire route,
so intercepting not only single blackholes but also cooperative attacks. Note that, in this
case, BN-AODV detects only one of the malicious nodes involved in the attack. More
precisely, suppose we have a group of colluders c1, c2, ..., cn and a main blackhole b,
lying consecutively in the route to reach destination d between a host h and d, i.e. h, c1,
c2, ..., cn, b, …, d. The fake RREP generated by b then goes through the chain cn, ..., c2,
c1, before reaching h. Thanks to the protocol, h is able to stop the route discovery,
however it can only suspect that c1 is malicious, without any possibility to deduct
something about the next nodes of the chain. Nevertheless, the other malicious nodes
can be detected, one by one, in successive route discovery executions.

The proposed approach is quite draconian: if a node does not forward the correct
RES it is suspected to be a blackhole. Unfortunately, the loss of correct RES packets
(CHL packets) may be caused by node movement: in this case an honest node may be
incorrectly considered a blackhole. In order to mitigate this effect, we introduce trust
levels associated with each node. If a node n suspects one of its neighbours b to be a
blackhole, then n adds b in a trust table. The b-th entry of the trust table of a node n
expresses the trust level n has gained about b during past executions of the route
discovery. Every time a node is suspected to be a blackhole, its trust level is decreased;
every time it forwards the correct RES packet, its trust level is increased. In this way, a
node is not excluded from routing activities at once, but only when its trust level reaches
a lower limit. We assume a lower limit equals to -θ; when a node i discovers the
existence of a node j, i creates an entry concerning j in its trust table and initializes the
trust level of j to 0. Every time the trust level associated with j, drops to -θ, i marks j as
malicious. As a consequence, all packets coming in from j are always discarded by i,
moreover i does not send packets to j anymore.

Finally, note that the use of cryptography is crucial to prevent blackholes from
manipulating messages. In fact, without using keys, a blackhole could send fake
responses. In other words, malicious nodes are forced to behave properly, otherwise
their possible attacks are immediately intercepted. It is worth noting that both trust
levels and tables, and cryptographic issues are not considered in the present model.

Intercepting Blackhole Attacks in MANETs: An ASM-based Model 7

5 ASM-based Model

A MANET adopting BN-AODV can be modeled by a DASM including a set of Hosts
= {h1, ..., hn}, where each h1 models the behavior of a single node executing the protocol.
We can think about each h1 as univocally identified by its address. For the purposes of
the present paper, each host behaves either as an honest node, or as a blackhole, or as a
colluder, so three ASMs are presented, for describing the three different cases.

5.1 Honest ASM

All honest hosts behave homogeneously in accordance with the protocol, therefore we
here discuss only one ASM. For space reasons, only the main issues are described
below, leaving at an abstract level the less important details. Each honest ASM includes
the following functions:

 neighb: Hosts PowerSet(Hosts), which specifies the neighborhood of each host;
 wishToInitiate: Hosts boolean, which indicates whether a new communication

session is required;
 initiateTo: Hosts × Hosts boolean, which specifies the destination of the desired

communication;
 hasToVerify: Hosts × Hosts × Hosts boolean, which establishes if the received

RREP has to be verified or not;
 trusted: Hosts × Hosts boolean, which acts as a flag to indicate whether an RREP

packet concerning a destination has been judged to be trusted or not.

The meaning of the arguments of the functions above is quite obvious, except of
hasToVerify: its first argument indicates the node to which the verified RREP must be
forwarded; the second is the host from which the (un)verified RREP comes; the third
is the destination of the current route discovery.

In order to model broadcasting and unicasting of packets, every node is associated
with five queues of messages: requests, replies, challenges, responses and nacks, which
include RREQ, RREP, CHL, RES and NACK packets, respectively. These queues are
managed by the functions isEmpty and top, and by the rules enqueue and dequeue
whose purpose is in accordance with the respective names. The access of a field f of a
packet p is denoted by the form p.f. Note that in the protocol specification each control
packet does not include information about the router forwarding it; however, in the
following, we provide an additional field (p.sender) in each control packet for
modelling reasons. Moreover, each node is associated with a routing table plus a trust
table representing the information the nodes store about other nodes.

At the initial state of the computation all tables and queues are empty; the
neighbourhood of each host is pre-set, depending on the initial MANET topology; all
hosts are inactive, i.e. wishToInitiate and initiateTo evaluate to false for each node and
for each pair of nodes, respectively; hasToVerify evaluates to false for each triple of
nodes; trusted evaluates to undef for each pair of nodes.

The ASM pseudo-code of the i-th host is shown below, as HostProgram:

8 Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio

H
R

1
H

R
3

H
R

5
H

R
6

H
R

7
H

R
4

HostProgram ≡
 if isEmpty(requests(self)) then {
 let RREQ = top(requests(self)), previousHop = RREQ.sender in
 UpdateRoutingTable(self, RREQ)
 Router(RREQ, previousHop)
 dequeue RREQ from requests(self)
 }
 if wishToInitiate(self) = true then
 forall dest ∈ Hosts with dest ≠ self do
 if initiateTo(self, dest) = true then
 Initiator(dest)
 if isEmpty(replies(self)) then
 let RREP = top(replies(self)), nextHop = RREP.sender in
 if RREP.init ് self then {
 choose entry ∈ routingTable(self) with entry.dest = RREP.init
 previousHop := entry.nextHop seq
 hasToVerify(previousHop, nextHop, RREP.dest):=true
 }
 forall previousHop ∈ neighb(self) do
 forall nextHop ∈ neighb(self) do
 forall dest ∈ Hosts do
 if hasToVerify(previousHop, nextHop, dest) then
 Verify(top(replies(self)), previousHop, nextHop, dest)
 if isEmpty(challenges(self)) then {
 let CHL = top(challenges(self)) in
 if CHL.dest ൌ self then {
 let previousHop = CHL.sender in
 create_RES seq
 enqueue RES into responses(previousHop)
 dequeue CHL from challenges(self)
 }
 if CHL.dest ് self then {
 choose entry ∈ routingTable(self) with entry.dest = CHL.dest
 nextHop := entry.nextHop seq
 enqueue CHL into challenges(nextHop)
 dequeue CHL from challenges(self)
 }
 }
 if isEmpty(responses(self)) then {
 let RES = top(responses(self)) in
 if RES.dest ് self then {
 choose entry ∈ routingTable(self) with entry.dest = RES.dest
 previousHop := entry.nextHop seq
 enqueue RES into responses(previousHop)
 dequeue RES from responses(self)
 }
 }
 if isEmpty(nacks(self)) then {
 let NACK = top(nacks(self)) in
 if NACK.dest ് self then {
 choose entry ∈ routingTable(self) with entry.dest = NACK.dest
 previousHop := entry.nextHop seq
 UpdateRoutingTable(self, NACK)
 enqueue NACK into nacks(previousHop)
 dequeue NACK from nacks(self)
 }
 }

H
R

2

Intercepting Blackhole Attacks in MANETs: An ASM-based Model 9

V
R

1
V

R
2

V
R

3

V
R

4

Informally speaking, each host is inactive as long as no rule is applicable; the
idleness is left when one of the events guarding the conditions of the seven rules of the
machine happens. These events concern: an RREQ is received, then the rule HR1 fires,
leading to the execution of the Router submachine; the need to start a new
communication session is required, leading to the execution of the Initiator submachine
(rule HR2); an RREP is received, so HR3 establishes the need to verify its
trustworthiness; HR4 executes the Verify submachine when needed; a CHL is received
(HR5) so the node must reply with an RES (if the CHL was directed to that node), or it
must simply forward the CHL; an RES is received (HR6), so it has to be forwarded if
it is not directed to that node; a NACK is received (HR7), so it has to be forwarded if
it is not directed to that node.

The create_RES statement in HR5 has the effect to generate a new RES packet: it is
not formally specified for abstracting from the specific representation of the packet.
Analogous statements occur in the machines described in the following.

Note that the Router and the BroadcastRREQ submachines are analogous to the
homonymous machines used for modelling the N-AODV routing protocol we proposed
in [5], so, for space reasons, they are not formally modelled here: it is sufficient to state
that they behave accordingly to the respective names. Analogous considerations for the
UpdateRoutingTable and UpdateTrustTable submachines. Therefore, in the following
we only focus on the Initiator and Verify submachines: their ASM description will then
be useful for proving the correctness of the proposed protocol.

The Verify submachine includes two local functions:

 verify_waiting: Hosts × Hosts boolean, which acts as a flag indicating whether
the host is still waiting for the RES directed to it. Its initial value is false;

 verify_timeout: Hosts × Hosts ℕ, which models the waiting time for the RES.

The ASM pseudo-code of Verify is shown below:
Verify(RREP, previousHop, nextHop, dest) ≡
 if verify_waiting(self, dest) then {
 create_CHL seq
 enqueue CHL into challenges(nextHop)
 verify_waiting(self, dest) := true
 verify_timeout(self, dest) := default_value
 }
 if verify_waiting(self, dest) then {
 if isEmpty(responses(self)) then
 if ReliableRREP(self, top(responses(self))) then {
 trusted(self, dest) := true
 verify_waiting(self, dest) := false
 dequeue top(responses(self)) from responses(self)
 }
 verify_timeout(self, dest) := verify_timeout(self, dest) ‒ 1
 }
 if verify_waiting(self, dest)∧verify_timeout(self, dest) =0 then {
 trusted(self, dest) := false
 verify_waiting(self, dest) := false
 }
 if trusted(self, dest) then {
 UpdateRoutingTable(self, RREP)
 UpdateTrustTable(self, nextHop)
 dequeue RREP from replies(self)

10 Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio

IR
1

IR
2

IR
3

IR
5

V
R

5

IR
4

 if previousHop ≠ null then
 enqueue RREP into replies(previousHop)
 }
 if trusted(self, dest) then {
 UpdateTrustTable(self, nextHop)
 dequeue RREP from replies(self)
 }

ReliableRREP (self, top(responses(self))) is a predicate that evaluates to true when
the received RES packet is correct, so the respective RREP can be considered reliable.
It simply verifies that the content of the RES packet is exactly the expected value.

The submachine includes five rules, aimed at: creating and sending the CHL (VR1);
establishing (VR2) or denying (VR3) the trustworthiness of the previously received
RREP; updating both the routing table and the trust table if the RREP is trusted (VR4);
updating only the trust table if the RREP is not trusted (VR5). The verify_waiting
function avoids the node to create the same CHL more than one time. While the node
is waiting, it checks the incoming RESs: if an RES directed to it is received, and its
correctness is verified, then the RREP is judged to be trusted. Otherwise, the timeout is
decreased: when the timeout expires, the node assumes the RREP to be not trusted.
Finally, note that VR4 (according to [7]) uses the special constant null, for indicating
that previousHop ∉ Hosts: this happens when Verify is called by the Initiator
submachine because the RREP must not be forwarded to any other host.

Similarly to Verify, the Initiator submachine includes the following local functions:

 initiator_waiting: Hosts × Hosts boolean, which acts as a flag indicating whether
initiator is still waiting for (at least) an RREP directed to it. Its initial value is false;

 initiator_timeout: Hosts × Hosts ℕ, which models the waiting time for RREPs.

The ASM pseudo-code of Initiator is shown below:
Initiator(dest) ≡
 if dest ∈ neighb(self) ∨ dest ∈ routingTable(self) then {
 CommunicationSession(dest)
 initiateTo(self, dest) := false
 }
 if dest ∉ neighb(self) ∧ dest ∉ routingTable(self) then {
 create_RREQ seq
 BroadcastRREQ(RREQ)
 initiator_waiting(self, dest) := true
 initiator_timeout(self, dest) := default_value
 }
 if initiator_waiting(self, dest) then
 initiator_timeout(self,dest):=initiator_timeout(self,dest)‒1 seq
 if isEmpty(replies(self)) then
 forall r∈replies(self) with r.init=self and r.dest =dest do
 if trusted(self, dest) = undef then
 let nextHop = r.sender in Verify(r, null, nextHop, dest)
 if trusted(self, dest) then {
 CommunicationSession(dest)
 initiateTo(self, dest) := false
 initiator_waiting(self, dest) := false
 }
 if initiator_waiting(self, dest) ∧ isEmpty(nacks(self)) then {
 forall n ∈ nacks(self) with n.dest = self do {
 UpdateRoutingTable(self, n)

Intercepting Blackhole Attacks in MANETs: An ASM-based Model 11

IR
6

 dequeue n from nacks(self)
 }
 }
 if initiator_waiting(self, dest) ∧ initiator_timeout(self, dest)=0
 then {
 initiateTo(self, dest) := false
 initiator_waiting(self, dest) := false
 }

If a route to destination is already known, the communication session simply starts
(IR1). Otherwise, the route discovery process is initiated (IR2). Until the timeout is
greater than 0 (IR3), the incoming RREPs are checked. If (at least) an RREP directed
to the host is received, the last CHL is sent. If the last RES is received, then the
communication session can start (IR4). If NACKs directed to the host are received
during the waiting for RREPs (IR5), the routing table is updated. The last rule (IR6)
simply resets the node to inactivity.

The initiator is the last host verifying the trustworthiness of the RREP, so in IR3 the
Verify submachine is called with a null value, instead of previousHop argument.

Note that an initiator could receive multiple RREPs concerning the same dest; in
order to reduce redundancy, the protocol requires to discard them once the reliability
of a route has been verified. However, for space reasons, this computation is not
described.

5.2 Malicious ASMs

The literature does not provide a univocal, formal definition of blackhole (and
colluder). In the following, we firstly provide a precise definition for this concept; then
we present a model of malicious ASM.

Definition 1 (Forward neighbor). A forward neighbor fn of a node n is the next hop
of n in the route to reach the destination d, i.e. n, fn, ..., d.

Thanks to the notion of forward neighbor, a blackhole is recursively defined:
Definition 2 (Blackhole). A blackhole is: (i) a main blackhole if it originates fake

RREPs; or (ii) a colluder if its forward neighbor is a blackhole.
Therefore, differently from honest hosts, malicious hosts can behave

heterogeneously in accordance with two ASMs, depending on whether the host is the
main blackhole or one of its colluders.

Note that for both the blackhole and colluder nodes we assume the worst possible
scenario: they behave maliciously without executing any other route discovery activity.
Moreover, we assume that malicious nodes never behave honestly. Finally, we assume
that the respective queues are initially empty for both malicious ASMs.

Blackhole program. The malicious ASM of the host behaving as main blackhole
acts as a router claiming to know the best route to reach destination. This is done
independently from the knowledge the blackhole has about destination. Its model is:
BlackholeProgram ≡
 if isEmpty(requests(self)) then {
 let RREQ = top(requests(self)), previousHop = RREQ.sender in
 UpdateRoutingTable(self, RREQ)
 MaliciousRouter(RREQ, previousHop)
 dequeue RREQ from requests(self)

12 Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio

 }

where the MaliciousRouter submachine is simply:
MaliciousRouter(RREQ, previousHop) ≡
 create_RREP seq
 enqueue RREP into replies(previousHop)

In words: every time an RREQ reaches the blackhole, its routing table is updated
and a fake RREP is sent back: it is created in accordance with the information stored in
that RREQ.

Colluder program. The colluder node a priori forwards RREP packets
independently from their reliability. Its model is as follows:
ColluderProgram ≡
 if isEmpty(replies(self)) then {
 let RREP = top(replies(self)) in
 if RREP.init ് self then {
 choose entry ∈ routingTable(self) with entry.dest = RREP.init
 let previousHop := entry.nextHop seq
 enqueue RREP into replies(previousHop)
 dequeue RREP from replies(self)
 }
 }

6 Correctness

The ASMs modelling the malicious nodes are quite simple, so it is not necessary to
prove their correctness. Instead, this section aims at proving that possible attacks are
intercepted in every protocol execution. To this end, we assume perfect encryption:
encrypted messages cannot be read without knowing the corresponding decryption key;
this assumption leads to state that the Verify submachine consider reliable only the
RREPs actually produced by the proper hosts. Secondly, it is worth remarking that
multiple route discoveries can be executed in parallel and that each host can participate
in different route discoveries playing different roles. Moreover, we only consider single
communication attempts between couples of nodes: this does not compromise
generality. We firstly provide the following definition:

Definition 3 (Backward neighbor). A backward neighbor bn of a node n is the next
hop of n in the route to reach initiator i, i.e. i, ..., bn, n.

The correctness of the protocol modelled by the ASMs in Sect. 5 is stated by the two
following theorems: the first one assume that the network only includes one malicious
host (i.e., no colluders are considered); the second theorem generalizes the claim to
networks including colluders.

Theorem 1. The honest hosts intercept any single blackhole attack.
Proof. Let N be the set of network nodes, and let fRREP be the fake RREP produced

by the blackhole b ∊ N. In order to prove the claim, it must be proved that fRREP is
discarded by the backward neighbor, nk ∊ N, of b. Let n0, n1, …, nk-1, nk, b the route
between the initiator n0 and the blackhole. Formally, it must be proved that fRREP ∉
replies (nk-1). The only rule allowing nk to enqueue an RREP into the replies queue of
nk-1 is the rule VR4 in the Verify submachine. More precisely, the RREP is forwarded
only if trusted(self, dest) evaluates to true; in turn, the value of this location is initially
set to undef, and it is set to true only inside the VR2 of the same submachine, when the

Intercepting Blackhole Attacks in MANETs: An ASM-based Model 13

proper RES is received back by nk. Since Verify does not state the trustworthiness of
fRREP, trusted(self, dest) evaluates to false, so the received RREP is discarded in the
last line of VR4 (dequeue RREP from replies(self)). Thus, the protocol always
intercepts single blackhole attacks. □

Theorem 2. The honest hosts intercept any cooperative blackhole attack.
Proof. Let k be the number of colluders ci ∊ N, (1≤i≤k) of the main blackhole b. Each

ci forwards RREP packets without checking their trustworthiness, in accordance with
ColluderProgram. In order to prove the claim, let's consider the worst scenario, in
which all nodes between the initiator n0 and b are colluders, i.e. the route is n0, c1, c2,
…, ck, b. It must be proved that when fRREP ∊ replies(n0) the communication does not
start. If fRREP ∊ replies(n0) then n0 executes the IR3 rule of the Initiator submachine.
In turn, this rule executes the verification of the RREP, and the communication session
can start only if that RREP is trusted, otherwise it is discarded: since fRREP is not
trusted by definition, it is discarded, and the communication cannot start. The case in
which there is at least one honest node in the route between n0 and b is captured by
Theorem 1. Therefore, the protocol always intercepts cooperative attacks. □

7 Conclusion

The diffusion of MANETs imposes the need to properly manage security issues. The
present paper proposed the Blackhole-free NACK-based AODV (BN-AODV) routing
protocol for intercepting blackhole attacks: differently from analogous proposals, we
formally specified the protocol using Abstract States Machines and thanks to the
formalism the capability to identify all nodes responsible of the attack has been proved.

Unfortunately, the formal static approach followed in this paper is not sufficient for
evaluating the capability of the protocol to identify only malicious nodes. In fact, the
draconian approach to the discovery of blackholes could label an honest node as
malicious, simply because of the change of the topology, due to the hosts’ movements.

The next step of the research will implement the model into the ASMETA tool [12]
with a twofold purpose. On one hand, the execution of the model in a proper
environment will allow us to discover possible errors and to identify improvements: for
example, thanks to the implementation, the concept of time (e.g., the time nodes must
wait for the proper responses) will be better treated in order to consider real time events.
On the other hand, the behaviour of the protocol can be empirically investigated.

References

1. Agrawal, D., Zeng, Q.: Introduction to Wireless and Mobile Systems. Thomson
Brooks/Cole (2003)

2. Kannhavong, B., Nakayama, H., Nemoto, Y., Kato, N., Jamalipour, A.: A Survey
of Routing Attacks in MANET. IEEE Wireless Comm., 14(5), 85–91 (2007)

3. Tseng, F.H., Chou, L.D., Chao, H.C.: A survey of black hole attacks in wireless
MANET. Human-centric Computing and Information Sciences, 1:4 (2011)

14 Alessandro Bianchi, Sebastiano Pizzutilo and Gennaro Vessio

4. Agrawal, P., Ghosh, R.K., Das, S.K.: Cooperative Black and Gray Hole Attacks in
Mobile Ad Hoc Networks. In: 2nd International Conference on Ubiquitous
Information Management and Communication, 310–314 (2008)

5. Bianchi, A., Pizzutilo, S., Vessio, G.: Preliminary Description of NACK-based Ad-
hoc On-demand Distance Vector Routing Protocol for MANETs. In: 9th Int. Conf.
on Software: Engineering and Applications, pp.500-505. (2014)

6. Bianchi, A., Pizzutilo, S., Vessio, G.: CoreASM-based Evaluation of the N-AODV
Protocol for Mobile Ad-hoc NETworks. J. of Mobile Multimedia, 12, 31-51 (2016)

7. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag (2003)

8. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. Börger, E., ed., Specification
and Validation Methods, Oxford University Press, pp. 9-36 (1995)

9. Börger, E.: High-level system design and analysis using Abstract State Machines.
Hutter, D., Stephan, W., Traverso, P., Ullmann, M., eds., Current Trends in Applied
Formal Methods, LNCS 1641, Springer-Verlag, pp. 1-43 (1999)

10. Gurevich, Y., Rossman, B., Schulte, W.: Semantic Essence of AsmL. Theoretical
Computer Science, 342(3), pp. 370-412 (2005)

11. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An Extensible ASM Execution
Engine. Fundamenta Informaticae, 77(1-2), pp. 71-103 (2007)

12. Gargantini, A., Riccobene, E., Scandurra, P.: Model-Driven Language Engineering:
The ASMETA Case Study. Proc. of the 3rd International Conference on Software
Engineering Advances, pp. 373-378 (2008)

13. Jayakumar, G., Gopinath, G.: Performance Comparison of Two On-demand
Routing Protocols for Ad-hoc Networks Based on Random Way Point Mobility
Model. American Journal of Applied Sciences, 5(6), 659–664 (2008)

14. Goyal, P.: Simulation Study of Comparative Performance of AODV, OLSR, FSR
and LAR Routing Protocols in MANET in Large Scale Scenarios. In: World
Congress of Information and Communication Technologies 283–286 (2012)

15. Singh, A., Ramakrishnan, C., Smolka, S.: A Process Calculus for Mobile Ad Hoc
Networks. In: 10th Int.Conf. Coordination Models and Languages, 296–314 (2008)

16. Merro, M.: An Observational Theory for Mobile Ad Hoc Networks. Information
and Computation, 207(2), 194–208 (2009)

17. Fehnker, A., Glabbeek, R.V., Höfner, P., McIver, A., Portmann, M., Tan, W.L.: A
Process Algebra for Wireless Mesh Networks. In: 21st European Symposium on
Programming, 295–315 (2012)

18. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized Verification of Ad Hoc
Networks. In: 21th Int. Conference of Concurrency Theory, 313–327 (2010)

19. Bianchi, A., Pizzutilo, S.: Studying MANET through a Petri Net-Based Model. In:
2th International Conference of Evolving Internet, 220–225 (2010)

20. Bianchi, A., Pizzutilo, S.: A Coloured Nested Petri Nets Model for Discussing
MANET Properties. Int. Journal on Multimedia Technology, 3(2) 38-44 (2013)

21. Xiong, C., Murata, T., Tsai, J.: Modeling and simulation of routing protocol for
MANET using Colored Petri Nets. In: Conf. Application and Theory of Petri Nets:
Formal Methods in Soft. Eng. and Defence Systems, Vol. 12, 145–153 (2002)

Intercepting Blackhole Attacks in MANETs: An ASM-based Model 15

22. Xiong, C., Murata, T., Leigh, J.: An approach for verifying routing protocols in
mobile ad hoc networks using Petri nets. In: 6th IEEE Symposium on Circuits and
Systems, Vol. 2, 537–540 (2004)

23. Erbas, F., Kyamakya, K., Jobmann, K.: Modelling and performance analysis of a
novel position-based reliable unicast and multicast routing method using coloured
Petri nets. In: Vehicular Technology Conf., Vol. 5, 3099–3104 (2003)

24. Jahanian, M.H., Amin, F., Jahangir, A.H.: Analysis of TESLA protocol in vehicular
ad hoc networks using timed colored Petri nets. In: 6th Int. Conf. on the Information
and Communication Systems, 222–227 (2015)

25. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent Systems. International Journal on Software
Tools for Technology Transfer, 9(3-4), 213–254 (2007)

26. Börger, E.: Modeling Distributed Algorithms by Abstract State Machines
Compared to Petri Nets. In: 5th ABZ International Conference, 3{34 (2016).

27. Reisig, W.: The Expressive Power of Abstract State Machines. Computing and
Informatics, 22, pp. 209-219 (2003)

28. Dershowitz, N.: The Generic Model of Computation. Electronic Proceedings in
Theoretical Computer Science (2013)

29. Gurevich, Y.: Sequential Abstract State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic, 1(1), 77-111 (2000)

30. Blass, A., Gurevich, Y.: Abstract State Machines Capture Parallel Algorithms.
ACM Transactions on Computational Logic, 4(4), 578- 651 (2003)

31. Glausch, A., Reisig, W.: An ASM-Characterization of a Class of Distributed
Algorithms. Abrial, J.R., Glässer, U., eds., Rigorous Methods for Software
Construction and Analysis, pp. 50-64 (2009)

32. Börger, E., Schewe, K.D.: Concurrent abstract state machines. Acta Informatica,
53(5), 469-492 (2016)

33. Sun, B., Guan, Y., Chen, J., Pooch, U.W.: Detecting Blackhole attack in Mobile Ad
Hoc Networks. In: 5th Conf. on Personal Mobile Communications, 490–495 (2003)

34. Al-Shurman, M., Yoo, S.M., Park, S.: Black Hole Attack in Mobile Ad Hoc
Network. In: 42nd Annual Southeast Regional Conference, 96–97 (2004)

35. Tamilselvan, L., Sankaranarayanan, V.: Prevention of Blackhole Attack in
MANET. In: 2nd Int. Conf. on Wireless Broadband and Ultra Wideband
Communications, 21 (2007)

36. Raj, P.N., Swadas, P.B.: DPRAODV: A Dynamic Learning System Against
Blackhole Attack in AODV based MANET. International Journal of Computer
Science Issues, 2, 54–59 (2009)

37. Ramaswamy, S., Fu, H., Sreekantaradhya, M., Dixon, J., Nygard, K.: Prevention of
Cooperative Black Hole Attack in Wireless Ad Hoc Networks. In: International
Conference on Wireless Networks (2003)

38. Tamilselvan, L., Sankaranarayanan, V.: Prevention of Co-operative Black Hole
Attack in MANET. Journal of Networks, 3(5), 13–20 (2008)

39. Perkins, C.E., Belding-Royer, E., Das, S.R.: Ad hoc On-Demand Distance Vector
(AODV) Routing. RFC 3561, http://tools.ietf.org/html/rfc3561 (2003)

