A Framework for Modelling Variable
Microservices as Software Product Lines

Moh. Afifun Naily!, Maya R. A Setyautami', Radu Muschevici?, and Ade
Azurat!

1 Faculty of Computer Science, Universitas Indonesia
2 Dept. of Computer Science, Technische Universitit Darmstadt
{afifunnaily@cs.ui.ac.id, mayaretno@cs.ui.ac.id,
radu.muschevici@cs.tu-darmstadt.de, ade@cs.ui.ac.id}

Abstract. Microservices architecture is a software development style
that divides software into several small, independently deployable services.
Every service can be invoked by standard protocols such as HTTP, so it
can be used on a variety of platforms (e.g. mobile, web, desktop). The
diversity of users of microservices-based software causes an increased
variation in software requirements. In order to accommodate this vari-
ability, we propose a framework for microservices-based software based
on the Software Product Line Engineering (SPLE) approach. We call
this framework ABS Microservices Framework, as it relies on the Ab-
stract Behavioral Specification (ABS) language development platform
that readily supports SPLE. The framework created in this research has
shown more flexibility to accommodate software variability than other
microservices frameworks. Hence, the ABS Microservices Framework can
support the software industry to distribute variable software of high
quality and reliability.

Keywords: Microservices, Framework, Software Product Line Engineer-
ing, Abstract Behavioral Specification

1 Introduction

Microservices are an emerging architectural style of software development. This
style changes the development paradigm to creating an application as a set of
(small) services instead of a single unit |4]. Each unit of system functionality is
built as an independent service that can be accessed by other multi-platform
applications. In this architectural style, an application could even be written using
different programming languages for each service, while the data representation
will be standardized as per Representational State Transfer (REST) and encoded
in the JSON format.

As software evolves over its lifetime, requirement changes are all but inevitable.
In microservices architecture, the impact of such changes — the effort to adapt the
system to the new requirements — can be mitigated, as each service is modular.
Of course, if a service is implemented with the help of several modules, all these

2 Moh. Afifun Naily et al.

might be subject to implementation changes. Requirement changes could also
directly affect a whole range of services and necessitate complex implementation
changes as a consequence. Thus, we argue that a more structured mechanism to
manage requirement changes in microservices architecture is required.

The Software Product Line Engineering (SPLE) paradigm allows the devel-
opment of multiple software products in a single development cycle by defining
commonalities and differences between products [11]. To help do this systemat-
ically, SPLE uses features and expresses products as compositions of features.
Delta Oriented Programming (DOP) [14] is a software design methodology aligned
with the SPLE paradigm, where the features are implemented using delta modules
(deltas). Deltas define the modification of a core module, which describes the
system commonality. The Abstract Behavioral Specification (ABS) language [7]
is an executable modeling and programming language that supports SPLE by
implementing the DOP approach.

In this paper, we propose a new framework to build microservices-based
software with the Software Product Line Engineering approach. We aim to
minimize the effort in accommodating requirement changes by using the rigorous
approach to variability management provided by SPLE. By using this approach,
our framework offers flexibility to accommodate changes combined with the
confidence that changes are always applied consistently, as specified by the
variability model.

The paper is structured as follows: Section [2| provides background information
on microservice architecture, software product line engineering, and the Abstract
Behavioral Specification language; Section [3]describes the design of the framework;
Section [] explains how the framework works and details its implementation. We
conduct analysis by comparing our framework with other microservice framework
(Spring Boot) in Section [5} Section [6] discusses related work. Conclusions and
some possible future work are presented in Section [7]

2 Background

2.1 Microservices Architecture

The microservices architecture was first discussed in 2011 at a workshop on
software architecture in Venice, Italy |4]. The following year at the same event, a
set of microservices terminology was defined. This was followed by a presentation
by James Lewis on “Micro Services - Java, the Unix Way” at 33rd Degree
in Krakow in 2013. In recent years microservices architecture has gradually
become more popular, which is apparent from the number of forums and special
conferences on this topic.

Being relatively new, there is no standard definition of microservices archi-
tecture. Martin Fowler defines microservices architecture as an approach for
developing single applications into small services (microservice), where each
service runs independently in different processes and can be called through sim-
ple communication mechanisms, such as the HTTP protocol [4]. According to
microservices.io, microservice architecture is divided in four components [12]:

http://microservices.io/

Modelling Variable Microservices as Software Product Lines 3

1. Presentation components, that is responsible for handling HTTP requests
and responding with either HTML or JSON/XML (for web services APIs),

2. Business logic, that consist of application functionalities,

Database access logic, that is responsible to access persistent data,

4. Application integration logic, that is responsible for exchanging messages
with other systems.

@

2.2 Software Product Line Engineering

Pohl et al. [11] defines Software Product Line Engineering (SPLE) as a paradigm
for developing software applications using platform and mass customization. In
SPLE context, platform is a common structure of software used to produce
derived products efficiently. Mass customization is achieved through variability
management, that is, the precise modelling of similarities and differences between
applications, which enables the automatic derivation of customized software
products.

The main concept of SPLE is to capture commonality and variability into
software features |10]. Commonality is a property or features that can be shared
and used by all applications (software) in a product line. Variability is the
difference of features used by all or several applications in a product line.

The development process of SPLE is divided into two processes, domain
engineering and the application engineering [11]. Domain engineering is a pro-
cess to define or model commonality and variability in the product line, while
application engineering is the process of building concrete products based on the
model constructed in the domain engineering process.

2.3 Abstract Behavioral Specification (ABS)

ABS is a formal modeling language, executable, object oriented, concurrent and
can model software with a high level of variability, such as software product
lines [6]. ABS was developed by a European consortium since 2008 in a project
called Highly Adaptable and Trustworthy Software (HATS). There are five
language layers in the ABS model that together support SPLE [5]:

— Core ABS: provides functional and object-oriented programming constructs,
used to specify the “core” product with functionality common to all products
of the product line.

— Feature modeling: defines the SPL’s features and dependencies among them.

— Delta modelling: defines the implementation of features. Delta Model modifies
core model by adding, removing, or modifying classes, interfaces, attributes,
or methods.

— Product line configuration: defines the connection between Delta Model and
Feature Model. One delta can be used by many features and one feature can
be implemented by many deltas. The configuration thus defines which deltas
are applied for specific feature combinations.

— Product selection: defines products as sets of features and naming them for
convenient reference.

4 Moh. Afifun Naily et al.

3 Methodology

This section describes the methodology used in the paper, explaining how we
design and construct our framework.

Problem Space Solution Space

Domain Analysis Domain Implementation

mappmg
T O —

2y

Product
configuration
Deltas

Provide common

implementation
artifacts

Domain
Engineering

Provide set of

features

Requirement Analysis Product Derivation
Derive

selegted
featqre Product

Feature Selection Product
Composition

Application
Engineering

|:| SPLE Process |:| SPLE Process in ABS Additional modules in ABS Microservices Framework

Fig. 1. SPLE Process in ABS Microservices Framework

Figure [I] shows an overview of the SPLE process in ABS Microservices
Framework which adapted from [1]. Czarnecki and Eisenecker [3] distinguish
between problem space and solution space. The problem space is the perspective
of users. Problem space comprises domain-specific abstractions that describe the
requirements on a software system and its intended behavior [§]. The solution
space is the developers’ perspective. Solution space comprises implementation-
oriented abstractions, such as code artifacts [8].

According to [1], there are two engineering process, Domain Engineering and
Application Engineering. Domain Engineering is a process to analyze potential
requirement of application (commonalities and variants) and build reusable
artifacts based that analysis. In this process, there two sub-process, domain
analysis and domain implementation. Domain analysis takes place in problem
space in domain engineering. Domain analysis is process to analyze scope and

Modelling Variable Microservices as Software Product Lines 5

all possibility requirement of domain, the output from this process is set of
features. In ABS, this process in called feature modeling, and it implemented in
feature model. Domain implementation is solution space of domain engineering.
Domain implementation is process to implement reusable artifact based on
domain analysis, the output of this process is source codes. In ABS, this process is
implemented by core and deltas. Core is basic product that contains commonalities
implementation of product. Deltas is set of delta modules that implements
variation of product. Deltas modules is used to implement features in feature
model. Correlation between delta modules and features is coordinated by product
configuration.

Application Engineering is process to compose and reuse artifacts from Domain
Engineering which divided into two sub-process, requirement analysis and product
derivation. Requirement analysis is process to get requirement of specific user.
In this process, we select appropriate features from domain analysis based on
users’ need. In ABS, this process is called feature selection or product selection.
Product derivation is process to compose the product which selected features
from feature selection process are verified. If the selected features is valid (follow
the rules in feature model), then list of appropriate artifacts will be composed to
generate microservice-based product according to product configuration.

ABS SPLE Process

Generate
Middleware Generated Microservices-based
D Invoke
appropriate
Http Request Request microservice
D Router
<:] ABS Object
Http Response to JSON Return i
(JSON) ABS Object ion
WwWw G

Fig. 2. Design of ABS Microservices Framework

In this paper, we use the SPLE process above to create a microservice-based
product by using ABS. All those process are part of our framework, which we
call ABS Microservices Framework. In here, we add microservices modules and
their routing configuration in core. A microservices module does not merely

6 Moh. Afifun Naily et al.

represent a feature. In ABS, a feature is implemented by one or more delta
modules. Therefore, in this framework we could implement a microservice by
using delta modules.

A microservices module consist of layers i.e. resource layer, service layer,
domain layer, repository layer and persistence layer. The resource layer handles
the incoming request and messages to objects representing the domain. Service
layer contains logic implementation and coordinates across multiple domain
activities. Domain layer represents model or entity that related with microservice.
Repository layer provides a collection of operation to access persistent data
through ORM. Persistence layer maps persistent data to domain. This structure
is adapted from [2]. Figure |3|shows the structure and the connectivity between
layers.

Microservices Module

Resource Layer
[

Service Layer
I

Domain Layer
|

Repository Layer

Persistence Layer (ABS ORM)

Fig. 3. The anatomy of microservices module in ABS Microservices Framework

Figure [2| shows the design of the ABS Microservices Framework that consists
of three parts: ABS SPLE process, the generated microservice-based product
and middleware. The ABS SPLE process is modeling part of the system using
ABS modeling language as well as illustrated in Figure [} Furthermore, the
generated microservice-based product is a product that produced from the ABS
SPLE Process. The product contains the selected microservices module and its
routing configuration. The middleware is a module that acts as an interface for
the microservice modules so it can be accessed from the external system using
the HTTP protocol. There are two sub-modules in the middleware, the Request
Router and ABS Object to JSON. The request router receives hitp request and
maps the incoming requests to invoke the appropriate microservices, based on the
routing configuration. Each microservices will return data as ABS object type.
The data will be transform into JSON format by ABS object to JSON module.

Modelling Variable Microservices as Software Product Lines 7

4 Implementation

This section explains how to generate microservices-based products using the ABS
Microservices Framework step by step, as outlined in Figure [I} We use a simple
bank account example as toy case study. The simple bank account has three
features, Type, Check and Save. For this case study, we generate two microservices-
based products, CheckingAccount and SavingAccount. CheckingAccount is a
product that has the Type and Check features. SavingAccount is a product with
the Type and Save features.

4.1 Feature Model

First we need to define a feature model for our product line. A feature model in
ABS is essentially a textual representation of a feature diagram. Figure [d] shows
the feature diagram of the simple bank account SPL. It has a Type feature that
has two child features Check and Save.

Account

Int interest

Check Save
interest=0 interest>0

Fig. 4. Simple Bank AccountFeature Diagram

If the Check feature is selected, the value of the interest attribute must be
0, whereas with the Save feature it must be greater than 0. The arc between
Check and Save means that we only allow to choose one feature; in other words,
the account can be either a checking or savings account. The corresponding ABS
feature model of simple bank account is shown in the code below.

root Account {
group allof {
Type {
Int interest;
group oneof {
Check { ifin: Type.interest == 0; },
Save { ifin: Type.interest > 0; }
}
}
}
}

8 Moh. Afifun Naily et al.

4.2 Microservices Module

Microservices module is a module that contains the implementation of microser-
vices. A microservices module implements one or more microservices. For ex-
ample, in our bank account, we have Account module that contains two mi-
croservices i.e. withdraw and deposit. Account consists of MAccountResource
as resource layer, MAccountService as service layer, MAccountModel as domain
layer, MAccountDbImpl and persistence layer is implemented using a library called
ABS ORM. In this paper, we just focus on the service layer.

The service layer implementation of the Account module provides two mi-
croservices, “withdraw” and “deposit”. The implementation of “withdraw” is
illustrated below. It performs a query on the database based on the account ID
to get the account model. Then it calls the withdraw method on the account
model and saves it back to the database. The deposit service follows the same
pattern to perform the deposit operation.

class AccountServiceImpl implements AccountService {
Account withdraw(String id, Int amount) {

AccountDb orm = new local AccountDbImpl() ;
String qry = "id=" + id;
Account a = orm.findByAttributes("MAccountModel.AccountImpl_c", qry);
a.withdraw(amount) ;
orm.update(a) ;
return a;

4.3 Delta Modules

In the next step we create a delta module for each feature defined in the feature
model; we name these deltas DType, DSave and DCheck. Below we show the
implementation of delta DSave. It modifies class AccountImpl by removing its
interest variable and re-adding it, initializing it with the value provided by the
delta parameter i.

delta DSave (Int i);
uses MAccountModel;
modifies class AccountImpl {
removes Int interest;
adds Int interest = ij;

4.4 Routing Configuration

Routing configuration is used to configure URL for each microservice. The routing
configuration is defined by the following format:

Modelling Variable Microservices as Software Product Lines 9

"<URL>" => "<resource_class_name>@<method_name>"

URL defines address called by the users if they want to invoke a microservice.
Resource class name is the name of class that has responsibility to handle request
of microservice. Then, method name is the name of method that serves the
microservice. The routing configuration of Simple Bank Account is shown in
the following code. For example, /account/withdraw.abs is the URL to access
withdraw microservices.

module ABS.Framework.Route;
class RouteConfigImpl implements RouteConfig {
String route(String url) {
String result = case url {
"/account/withdraw.abs"
=> "MAccountResource.AccountResourceImplQwithdraw";
"/account/deposit.abs"
=> "MAccountResource.AccountResourceImpl@deposit";

}

return result;
}
}

4.5 Product Configuration

In this step we define the product configuration of the simple bank account. It is
used to define the relationship between feature and delta modules. For example,
delta module DType will be applied to Type feature, if it is selected.

productline Accounts;
features Fee, Overdraft, Check, Save, Type;
delta DType(Type.interest) when Type;
delta DSave(Type.interest) after DType when Save;
delta DCheck after DType when Check;

4.6 Product Selection

The next step is to define all products to be generated. In this case, we will generate
two products i.e. CheckingAccount and SavingAccount. CheckingAccount is
a product that have Type and Check features. SavingAccount is a product with
Type and Save features.

product CheckingAccount (Type{interest=0},Check);
product SavingAccount (Type{interest=1},Save);

4.7 Generate and Run Product

If all the steps has been completed, next we generate the product by us-
ing the command ant -Dabsproduct=<product_name> abs.deploy. The prod-

10 Moh. Afifun Naily et al.

uct name is the name of product, that has been defined in product selec-
tion before. For example, if we want to generate CheckingAccount, we type
ant -Dabsproduct=CheckingAccount abs.deploy.

After product generation has been successful, the next step is running the
product by using java -jar absserver.jar command. By default, products
run on localhost on port 8081.

5 Analysis

For analysis, we compared the requirement changes handling between this frame-
work and other framework. For comparison we used Spring Boot Framework -
the most popular JAVA microservices framework-. We modified the requirement
of microservices-based application that developed before by adding two features
i.e. Overdraft and Fee. Overdraft is a feature that allowed Bank Account to
withdraw money more than its balance and Fee is a feature to add fee to Bank
Account every deposit. In this case, we generate three products:

1. AccountWithFee : product with feature Type, Check and Fee.

2. AccountWithOverdraft : product with feature Type, Check and Overdraft.

3. AccountWithFeeAndOverdraft : product with feature Type, Check, Fee and
Overdraft.

After that, we applied the requirement changes to each frameworks. First, we
simulate it in Spring Boot. Then, we simulate it in ABS Microservices Framework.
We will compare how many changes that is done to overcome the requirement
changes.

5.1 Simulation in Spring Boot

AccountWithFee Product - We create FeeAccount class that extends Account
class. FeeAccount class override deposit method of Account. And then, we can
see that we have to add its associate class in each layer (See Figure)

package com.rse.domain;
@Entity
public class FeeAccount extends Account {
public int deposit(int x){
Int result = x;
if (x>=fee) { result = super(x-fee)};

this.balance = result;
return this.balance;

Modelling Variable Microservices as Software Product Lines 11

AccountWithOverdraft Product - We create OverdraftAccount class that
extends Account class and override withdraw method of Account by removing
the mechanism of checking balance and the amount of withdrawal. And then, we
add its associate class in each layer ((See Figure [pp).

package com.rse.domain;
@Entity
public class OverdraftAccount extends Account {
public int withdraw(int x){
this.balance = this.balance - y;
return this.balance;

}
}

AccountWithFeeAndOverdraft Product - We do same as before. we create
OverdraftFeeAccount class that extends Account class and override withdraw
and deposit method of Account. And then, we add its associate class in each

layer (See Figure [k).

package com.rse.domain;
GEntity
public class OverdraftAccount extends Account {
public int withdraw(int x){
this.balance = this.balance - y;

return this.balance;

}

public int deposit(int x){
Int result = x;
if (x>=fee) { result = super(x-fee)};
this.balance = result;
return this.balance;
}
}

5.2 Simulation in ABS Microservices Framework

Before we start to build product, we have to create delta module for Overdraft
and Fee. We create delta module DOverdraft for Overdraft and delta module
DFee for Fee. After that, we have to update our product configuration and add
three products above to product selection.

12 Moh. Afifun Naily et al.

v &= domain v & domain v = domain

B Account,java [Accountjava B Accountjava

[Customer.java [B Customer.java [Customer.java

[® FeeAccount.java [OverdraftAccount.java [OverdraftFeeAccount.java
v & repository v B repository v & repository

[B AccountRepository.java [® AccountRepository.java [AccountRepository.java

[CustomerRepository.java [CustomerRepository.java [B CustomerRepository.java

[® FeeAccountRepository.java [® OverdraftAccountRepository.java OverdraftFeeAccountRepository.java
v B resource v > resource v B resource

@ AccountResource.java @ AccountResource.java [B AccountResource.java

[CustomerResource.java [CustomerResource. java [B CustomerResource.java

[B FeeAccountResource.java [® OverdraftAccountResource java OverdraftFeeAccountResource java
v & service v > senvice v B service

[AccountService java [AccountService.java [AccountService java

[AccountServicelmpl.java [AccountServicelmpl.java [AccountServicelmpl.java

[CustomerService java [B CustomerService.java [B CustomerService java

[CustomerServicelmpl.java [CustomerServicelmpl.java CustomerServicelmpl.java

[B FeeAccountService java [® OverdraftAccountService java [® OverdraftFeeAccountService.java

[® FeeAccountServicelmpl.java [® OverdraftAccountServicelmpl.java [B OverdraftFeeAccountServicelmpl.java

(@) (b) (©)

Fig. 5. Subclass for each product in every layer Spring Boot. (a) AccountWithFee
product, (b) AccountWithOverdraft product and (c¢) AccountWithFeeAndOverdraft
product.

delta DOverdraft;
uses MAccountModel;
modifies class AccountImpl {
modifies Int withdraw(Int y) {
balance = balance - y;
return balance;
}
}

The following snippet code is implementation of delta module DOverdraft,
which modify withdraw method of class AccountImpl by removing balance
checker.

delta DFee (Int fee);
uses MAccountModel;
modifies class AccountImpl {
modifies Int deposit(Int x) {
Int result = x;
if (x>=fee) result = original(x-fee);
return result;
}
}

The implementation of delta module DFee is shown on the following snippet
code. This delta modify withdraw method of class AccountImpl by adding fee
parameter. original method means its method will call deposit method with
original implementation.

Modelling Variable Microservices as Software Product Lines 13

productline Accounts;
features Fee, Overdraft, Check, Save, Type;
delta DType(Type.interest) when Type;
delta DFee(Fee.amount) when Fee;
delta DOverdraft after DCheck when Overdraft;
delta DSave(Type.interest) after DType when Save;
delta DCheck after DType when Check;

product CheckingAccount (Type{interest=0},Check);

product SavingAccount (Type{interest=1},Check);

product AccountWithFee (Type{interest=0},Check,Fee{amount=1});

product AccountWithOverdraft (Type{interest=0},Check,Overdraft);

product AccountWithFeeAndOverdraft (Type{interest=1},Save,Fee,0verdraft);

Finally, we generate (build) the products by executing the following commands
on the console:
ant -Dabsproduct=AccountWithFee abs.deploy
ant -Dabsproduct=AccountWithOverdraft abs.deploy
ant -Dabsproduct=AccountWith FeeAndOverdraft abs.deploy

From both simulation above we found that in the Spring Boot, we have to do
same effort for each product. We have to add new class in every layer. Otherwise,
in ABS Microservices Framework, we can get three products on a single way. We
just need to add delta module for each features, configure it, select it, and the
last one generate the product. That simulation shows that in our framework, we
need less effort to overcome the requirement changes than Spring Boot. In Sprint
Boot, if there are requirement changes we have to modify each layer while in our
framework only modify one layer (see Figure @

ABS :
Microservices spring
Framework boot
Microservices Module Microservices Module
‘ Resource Layer ‘ : Resource Layer ;

|: e e '
Service Layer i Service Layer |
SR By pevp RN Bl pivipivivieinin et
i Domain Layer] i Domain Layer]
_______ 7= . s S
‘ Repository Layer ‘ ! Repository Layer :
Persistence Layer (ABS ORM) Persistence Layer (ABS ORM)

Fig. 6. The dash borderline box is modules that changed for handling requirement
changes

14 Moh. Afifun Naily et al.

6 Related Work

Our research is not the first effort to provide more structured support for
microservices development. Safina et al. [13] extend Jolie, a programming language
for the microservices paradigm, with a type system support for choices. While our
framework is aimed more at managing evolution of microservices, by employing
a programming language that provides broad support for variability, it could be
also used to design a data-driven workflow. CIDE [9] is another microservices
development environment that innovates in the domain of programming languages
with an multi-agent-oriented programming style.

7 Conclusion and Future Work

The ABS Microservices Framework proposed in this research is a novel paradigm
in microservices-based applications development; it’s essential underlying idea is
to structure related microservices as a software product line. It has been designed
to be used in a similar way to other microservices frameworks such as Spring
Boot, with the added benefit of more flexibility to handle requirements changes.

Future work will focus on finalising the framework design. For instance, the
connection between features and microservices has not yet been fully explained.
Furthermore, we need to add additional modules such as load balancer and
security mechanism. This framework only support HTTP methods GET and
POST, we have to add other methods, such as PUT and DELETE. In addition
to JSON format data, we also can provide other data representations such as
XML. Moreover, this framework have to be able to support multi-database and
also integrate with software testing tools.

8 Acknowledgements

This work was supported by Reliable Software Engineering (RSE) Laboratory,
Faculty of Computer Science, Universitas Indonesia and funded by Universitas
Indonesia under PITTA Grant number 395/UN2.R3.1/HKP.05.00/2017.

Radu’s contribution was supported by Landesoffensive fiir wissenschaftliche
Exzellenz (LOEWE; initiative to increase research excellence in the state of
Hessen, Germany) as part of the LOEWE Schwerpunkt CompuGene.

We thank the anonymous reviewers for their constructive comments, which
helped us to improve the manuscript.

References

1. S. Apel, D. Batory, C. Kéastner, and G. Saake. Feature-Oriented Software Product
Lines. Springer, 2016.

2. T. Clemson. Testing strategies in a microservice architecture., 2014.

3. K. Czarnecki, U. W. Eisenecker, and K. Czarnecki. Generative programming:
methods, tools, and applications, volume 16. Addison Wesley Reading, 2000.

10.

11.

12.

13.

14.

Modelling Variable Microservices as Software Product Lines 15

M. Fowler and J. Lewis. Microservices. ThoughtWorks. hitp://martinfowler.
com/articles/microservices. html [last accessed on February 17, 2015], 2014.

R. Héhnle. The abstract behavioral specification language: A tutorial introduction.
In Formal Methods for Components and Objects, pages 1-37. Springer, 2013.

R. Hahnle, M. Helvensteijn, E. B. Johnsen, M. Lienhardt, D. Sangiorgi, I. Schaefer,
and P. Y. Wong. Hats abstract behavioral specification: The architectural view. In
International Symposium on Formal Methods for Components and Objects, pages
109-132. Springer, 2011.

E. B. Johnsen, R. Hahnle, J. Schéfer, R. Schlatte, and M. Steffen. ABS: A core
language for abstract behavioral specification. In B. Aichernig, F. S. de Boer, and
M. M. Bonsangue, editors, Proc. 9th Intl. Symp. on Formal Methods for Components
and Objects FMCO), volume 6957 of LNCS, pages 142-164. Springer, 2011.

C. Késtner and S. Apel. Feature-oriented software development. In Generative and
Transformational Techniques in Software Engineering IV, pages 346-382. Springer,
2013.

D. Liu, H. Zhu, C. Xu, I. Bayley, D. Lightfoot, M. Green, and P. Marshall. CIDE: An
integrated development environment for microservices. In 2016 IEEE International
Conference on Services Computing (SCC), pages 808-812, 2016.

A. Metzger and K. Pohl. Software product lline engineering and variability man-
agement: Achievements and challenges. In Proceedings of the on Future of Software
Engineering, pages 70-84. ACM, 2014.

K. Pohl, G. Béckle, and F. Van Der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

C. Richardson. Pattern: Microservices architecture. Microservices. 1o.
http://microservices. io/patterns/microservices. html [last accessed on February 17,
2015, 2014.

L. Safina, M. Mazzara, F. Montesi, and V. Rivera. Data-driven workflows for
microservices: Genericity in Jolie. In 2016 IEEE 30th International Conference on
Advanced Information Networking and Applications (AINA), pages 430-437, 2016.
I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented
programming of software product lines. In Proc. 14th Intl. Conf. on Software
Product Lines: Going Beyond (SPLC), pages 77-91. Springer, 2010.

	A Framework for Modelling Variable Microservices as Software Product Lines
	Introduction
	Background
	Microservices Architecture
	Software Product Line Engineering
	Abstract Behavioral Specification (ABS)

	Methodology
	Implementation
	Feature Model
	Microservices Module
	Delta Modules
	Routing Configuration
	Product Configuration
	Product Selection
	Generate and Run Product

	Analysis
	Simulation in Spring Boot
	AccountWithFee Product
	AccountWithOverdraft Product
	AccountWithFeeAndOverdraft Product

	Simulation in ABS Microservices Framework

	Related Work
	Conclusion and Future Work
	Acknowledgements

